

Loading Multiple Versions

of an ASDF System in the

Same Lisp Image

Vsevolod Domkin

10
th
 European Lisp Symposium

2017-04-03

It all started with ...

I'm yet to see a name

conflict in Lisp that can't

be solved by application of

rename-package

-- a not-exact quote by Xach Beane (?)

Heard about adversarial learning?

Outline
* “Dependency Hell” problem and

solutions

* Lisp package system and relevant

facilities

* ASDF, its APIs & limitations

* Conflict scenarios

* Our solution to name conflict

resolution: its properties,

limitations and how it works

on/around ASDF

* Conclusions and future work

Module name/version

conflicts
Dependency hell arises around shared

packages or libraries on which several

other packages have dependencies but

where they depend on different and

incompatible versions of the shared

packages. [Wikipedia]

Also known as: “dll hell”, “jar hell”

Its manifestation

in the CL ecosystem

* Unrelated packages' name clashes:

reported conflict for “bt” nickname

in Quicklisp (among 1400+ libraries):

bordeaux-threads vs binary-types

* potential conflict between versions

of the same system

Solution in most

languages
“In a particularly sad situation, you may find

that you have two dependencies that depend on

very incompatible versions of a common

transitive dependency. Ideally, you should try

to update one of your dependencies to use a

newer version of the shared library. If you

can’t do this, a good backup plan is to

unleash a tormented wail and weep into your

keyboard.”

-- The Nine Circles of Python Dependency Hell

 (https://goo.gl/2WfTnh)

Java

* custom classloader

URLClassLoader clsLoader = URLClassLoader.newInstance(

 new URL[] {new URL("file:/C://Test/test.jar")});

Class cls = clsLoader.loadClass("test.Main");

Method method = cls.getMethod("main", String[].class);

String[]params = new String[2];

method.invoke(null, (Object) params);

* OSGi

* project Jigsaw

Javascript
Node.js require

// module.js

exports.hello = function() { return "Hello"; }

// main.js

const myModule = require('./module');

let val = myModule.hello();

ES6 imports

// module.js

export function hello() { return "Hello"; }

// main.js

import {hello} from 'module';

let val = hello();

Common Lisp

Package facility

* Packages are centrally-accessible

dynamic singleton objects that hold

references to symbols

* Package namespace is

non-hierarchical

* Packages may have nicknames

* Packages may be redefined and

renamed

Idea
In the case of a name conflict, use

rename-package to alter the name of

one the first conflicting package

before loading the second one.

Potential pitfalls:

- conflict discovery

- choosing the proper time to rename

the package

- limits the subsequent use of

eval & intern

Common Lisp

System facility
* Packages provide namespacing,

systems provide packaging

* ASDF a de facto standard–
* ASDF in many ways resembles the

package system: e.g. find-system is

modelled after find-package

* Package discovery and distribution

built on top of ASDF (see Quicklisp)

* A name conflict solution should be

built on top of package & system

facilities

Limitation of ASDF
Likewise with package, it has a

central in-memory registry of known

systems with a 1-to-1 name-system

correspondence.

ASDF supports system versioning, but

only marginally:

- only 1 system version may be known

- you can't call find-system with a

version argument

- ASDF ops (like load-op) may take

version as argument, but use it

passively (as a constraint)

Critique of ASDF

* its ops are not referentially-

transparent and not fully-extensible

* it's is a great tool, but it doesn't

(yet) realize its potential to

become a framework for building on

top of it

* its mid-level API is not complete,

neither it is documented

ASDF can't
* load a system from a specific

filesystem location

* enumerate all potential candidate

locations for loading a system

* find a system with a specified version

* load just the source files for the

system's components without

potentially reloading its dependencies

* read the contents of an ASDF system

definition without changing the global

state

Basic cases

“zero” (do nothing)

“basic” conflict

resolution required

Basic cases (2)

“subroot” “cross”

Basic cases (3)

“inter” “subinter”

Algorithm
1.Assemble the dependency tree for

the system to be loaded based on

ASDF systems' dependency information

and, using it, discover the

dependencies, which produce name

conflicts.

2.In case of no conflicts, fall back

to regular ASDF load sequence.

3.In case of conflicts, for each

conflicting system determine the

topmost possible user that doesn't

have two conflicting dependencies.

Algorithm (2)
4.Determine the load order of systems

using topological sort with an

additional constraint that, among

the children of the current node of

the dependency tree, the ones that

require conflict resolution will be

loaded in proper order.

5.Load the system's components

(without loading the dependencies)

in the determined order recording

the fact of visiting a particular

system to avoid reloading

of the same dependencies.

Algorithm (3)
6.During the load process, record all

package additions and associate them

with the system being loaded.

7.After a particular system has been

loaded, check whether it was

determined as a point of renaming

for one or more of its dependencies,

and perform the renaming

 (if necessary).

(defun load-system-with-renamings (sys)

 (multiple-value-bind (deps load-order renamings)

 (traverse-dep-tree sys)

 (when (zerop (hash-table-count renamings))

 (return-from load-system-with-renamings

 (asdf:load-system sys)))

 (let ((already-loaded (make-hash-table :test 'equal))

 (dep-packages (make-hash-table)))

 ;; load dependencies one by one in topological sort

 ;; order renaming packages when necessary and

 ;; caching the results

 (dolist (dep load-order)

 (let ((conflict (detect-conflict)))

 (when (or conflict

 (not (gethash (sys-name dep)

 already-loaded)))

 (renaming-packages

 (if conflict

 (load-system dep)

 (load-components

 (asdf:find-system (sys-name dep)))))

 (unless conflict

 (setf (gethash name already-loaded) t)))))))))

(defmacro renaming-packages (&body body)

 ̀(let ((known-packages (list-all-packages)))

 ,@body

 ;; record newly added packages

 (setf (gethash dep dep-packages)

 (set-difference (list-all-packages)

 known-packages))

 ;; it's safe to rename pending packages now

 (dolist (d (gethash dep renamings)))

 (let ((suff (format nil "~:@(~A-~A-~A~)"

 (sys-version d) (sys-name dep)

 (gensym))))

 (dolist (pkg (gethash d dep-packages))

 (rename-package

 pkg

 (format nil "~A-~A"

 (package-name package) suff)

 (mapcar (lambda (nickname)

 (format nil "~A-~A" nickname suff))

 (package-nicknames pkg))))))

Limitations of

this approach
* passive capture of package changes

* intended for automatic scenarios -

may mess up ad hoc interactive

workflows

* doesn't handle monkey-patching

* doesn't handle implicit transitive

Dependencies

* plus a couple of implementation

details

ASDF quiz
* How to get a record of a particular

ASDF system when you know its .asd file?

(asdf:load-asd asd)

(cdr (asdf:system-registered-p system))

ASDF quiz (2)
* How do you find all candidate .asd

systems in your “search path”?

(defun sysdef-exhaustive-central-registry-search (system)

 (let ((name (asdf:primary-system-name system))

 rez)

 (dolist (dir asdf:*central-registry*)

 (let ((defaults (eval dir)))

 (when (and defaults

 (uiop:directory-pathname-p defaults))

 (let ((file (asdf::probe-asd

 name defaults

 :truename asdf:*resolve-symlinks*)))

 (when file

 (push file rez))))))

 (reverse rez))))

ASDF quiz (3)
* How do you load just the system's

 Components without reloading all of

its dependencies

(and upgrading ASDF in the process)?

(defparameter *loading-with-renamings* nil)

(defmethod asdf:component-depends-on

 :around ((o asdf:prepare-op) (s asdf:system))

 (unless *loading-with-renamings*

 (call-next-method)))

(defun load-components (sys)

 (let ((*loading-with-renamings* t))

 (dolist (c (asdf:module-components sys))

 (asdf:operate 'asdf:load-op c)))

 t)

Parting words

* It works :)

* But more work needs to be done to

make it not just useful but reusable

* “ASDFx”

Thanks for your

attention!

Vsevolod Domkin

http://vseloved.github.io

vseloved @ gmail/twitter/github/…

http://m8nware.com

(m8n)ware a Lisp company working on –
cognition-related computing problems

