H This Old

ISP

L

R. Matthew Emerson

rme(@acm.org

Who 1s this tellow, anyway?

® Worked on OpenMCL / Clozure CL since
2007 (both as a Clozure Associates

employee and now independently)

® kirstused Allegro CL on the NeX'T machine,
and then used MCLL

JS JAVA G COROL LISP
DEVE LOPER DEVELOPER { | DEVELOPER DEVELOPER PDEVELOPER

r

hup://wrnoff.us/geek/developers/
as modified at hups.// twitter.com/nihirash/status/ 8808298 16072802304

Clozure CL background

1958

1984

1987

1983

Lisp

Common Lisp (CLTLT)

Coral Common Lisp £

-

Macintosh Common Lisp

1 MB Macintosh Plus

Apple acquires Coral

MCL transferred to Apple starts switch to

o Digitool PowerPC
1995 MCL ported to PowerPC QI 240 relea.se.d 454
product by Digitool
MCL (without GUL/
1998 IDE) ported to VxWorks done at JPL
and LinuxPPC
2001 OpenMCL Digitool grants permission

to redistribute under LL.GPL

port to x36-64

port to 32-bit ARM
port to Darwin (macOS)
port to 32-bit x86
port to Windows port to FreeBSD
native threads

Objective-C interface

port to Solaris-ish
port to 64-bit PowerPC

and more...

In 2007, Alice Hartley of Digitool announced that the code for the
original MCL would be open sourced (under the LLGPL).

Thus, to avoid confusion between OpenMCL and
the newly open-sourced MCL., OpenMCL was renamed to

Clozure CL

As a bonus, this made the CCL package name make sense again.

Digression:

Why did Digitool throw in
the towel on MCL?

Closure Closure

Clojure

o Closzjure?

Clozure CL today

® ocneral purpose implementation

® targets x36, x36-64, ARM (ppc32, ppco4
not supported after release 1.10)

® runs on Linux, macOS, FreeBSD, Solaris,

Windows

It’s old

;33 from slisp reader2.lisp, and apparently not touched
;33 1n 20 years.

(defun parse-integer (string &key (start @) end
(radix 10) junk-allowed)
.)

fancy loop macro, pretty printer, format, etc.

old subproblems

® printing and reading floating-point numbers
® bignum operations
® disassembler

® random number generation

Who uses it?

Linux

macOS

FreeBSD

Solaris-ish

Windows

0% 20% 40% 60%

80%

64-bit x86

32-bit x86

ARM

0% 25% 50% 75% 100%

Mulaple constituencies

® “batch” users on large memory machines

® hackers using Emacs and SLIME

® macOS Cocoa IDE users (Mac App Store or
otherwise)

Some CCL technologies

® compiler
® oarbage collector
® threads

e]

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GETBACK.
TOVORK!

I\

OH. CARRY ON. J™~ WWAW)

hups:/7/xked.com/303/

compiler

® (Generates reasonable code quickly.

® With some effort with declarations, floating-
point code can be halfway decent.

® |t could afford to work a little harder and still be
fast.

more compiler

® builds CCL itself in under a minute

® new users uncover new categories of bugs
(including performance bugs)

Nauve threads

® use multiple cpu cores
® hash tables
® streams

® thread-local shallow binding for special vars

Single-space compacting GG

old objects young objects

generatuons

GG implications

® (Objects may move at any time

® Passing data to foreign code generally requires
copying

® current GC stops other threads

Convenient FFI

IC’s easy to call C functions if you know their names.

? (external-call "getpid" :pid_t)
4771

more FFI

There 1s notation to describe and access foreign data.

(rletz ((x (:array :double 10)))
(setf (paref x (:array :double) 5) 100d0
(paref x (:array :double) 8) -1000d0)
(external-call "cblas idamax" :int 10
(:x% double) x :int 1 :int))

Interface translator

Interface translator (based on gcc or libclang)
turns .h files into s-expression representation.

CURL_EXTERN CURLcode curl_global_init(long
flags);

(function ("/usr/include/curl/curl.h" 2143)
"curl _global _1nit"
(function

((long ()))
(typedef "CURLcode")) (extern))

FFI1 reader macros

Lisp code parses the s-expression data and makes a
database used by reader macros. This way, you don’t
have to specily foreign types, because they are known
from the database.

? (open-shared-library "libcurl.dylib")
#<SHLIB /usr/lib/libcurl.dylib #x30200091FF6D>
? (# curl_global_init #$CURL_GLOBAL_DEFAULT)

0

related projects

® Test suite based on Paul Dietz’s ANSI CL tests
(github.com/Clozure/ccl-tests)

® documentation written using GCLDoc system
(github.com/Clozure/ccldoc)

® updated libclang-based ffigen

future plans

® keep up

® continue work on experimental register
allocator (which is opt-in via a special optimize
quality in 1.12 development branch)

® port to 64-bit ARM

® {ix bugs

future plans

® New macOS IDE

® macs and SLIME are perhaps a locally-

optmal plateau

® your wish here; get in touch

Who owns CCL?

® (Clozure Associates has supported CCL
development for many years, but the project has
never been Clozure’s product or private
playground.

® Copyright obtained from Digitool

® Apache 2.0 license instead of LLGPL

Who hacks on CCL?

® Gary Byers, a great hacker and long-term
driving force behind CCL, has retired.

® maybe you?

You can help CGCL

® On GitHub: https://github.com/Clozure/ccl

® #ccl on Freenode

® openmcl-devel(@clozure.com mailing list

® [)o cool stuft

Q Matthew Garrett < . >
ollow
@mjg59

Therapist: So you're afraid that you're
letting down people you've never met
and who you've given something for
free?

Me: Yeah basically

12:33 AM - 10 Sep 2017

You can get help for CCL

® (Clozure Associates can offer paid support for

Clozure CL

® You can hire me to do anything whatever with

Clozure CL

[€ Common Lisp and
Clozure CL

® The standard is stable, and provides a baseline
of much useful functionality

® Multple CL implementations to choose from

® | like Clozure CL.. Maybe you like something
clse. We can sull be friends.

® Built-in support for collections
® Automatic storage management
® Dynamic typing

® Hirst-class functions

® |nteractive environment

® Lxtensibility (functions, classes, syntax, reader)

® Uniform syntax (macros)

language & interactivity

® (L has a built-in assumption that the
programming environment is going to be
Iinteracuve

® ¢.g., trace, break, update-instance-for-
redefined-class

The spiritinside the computer

® carly micros said “Ready”

® interactive, incremental approach to
programming is great for exploring a new
problem domain, or working on a problem that
you don’t know how to solve

Counterpoint

® Cl’s interactive nature lets you jump right in
and start messing around with code, when
maybe it would be better to think a bit first.

® Furious activity is no substitute for
understanding.

I never look back, darling. It
distracts from the now.

“Indeed, one of my major complaints about the
computer field is that whereas Newton could
say, ‘If I have seen a little farther than others itis
because I have stood on the shoulders of
giants,” | am forced to say, “T'oday we stand on
each other’s feet.” Perhaps the central problem
we face in all of computer science 1s how we are
to get to the situation where we build on top of
the work of others rather than redoing so much
of itin a trivially different way.”

Richard Hamming

| could choose a single new JS
Framework, and | work with it all
vear to really leam it properly...

Hmwm, | can't
decide on my new
vear's resolution...

4 4 r“l

'
4 \

Or mavybe | should commit to
trying a different JS framework
every week for the rest of the
vear, so | stay up-to-date

The fact that both
ideas seem entirely reasonable
demonstrates just how f*cked
front-end dev is right now

CommitStap.com

hup://www.commitstrip.com/en/2018/01/08/new-year-new-frameworks/

Four well-defined
directions

Brushes and chisels

The enjoyment of one’s
tools 1s an essential
ingredient of successtul
work.

Vol I1, Seminumerical Algorithms, Section 4.2.2 part A, final paragraph

- swudlesopmows 0

W < > I 20-plot.opmo x | § < > [untited n +
i
::: Plot Examples
iii
;s List Plot
(list-plot (gen-ma-time-series 40 *(-0.4) 1.0 :scale 6) 20
:point-radius 2 :zero-based t)
(list-plot (gen-ar-time-series 120 #(0.75 0.0) 1.0 :scale 2)
:point-radius 2 :zero-based t) W < > Hj untitied 19 P
(list-plot (gen-white-noise 160 :scale 1) 50
i1join-points t :point-radius 0 :style :£ill :line-width .5) 40
0
(list-plot '(0 2 3 5 8 13 21 34) :zero-based t :point-radius 2) “;g
(list-plot "(0 2 3 5 8 13 21 3d) :rjoin-points t rzero-based t) o
(list-plot "(0 2 3 5 8 13 21 34) :join-points t :point-radius 2) -10
(list-plot '(0 2 3 58 13 21 34) :style :£i1]l :zero-based t) -20
-30
(list-plot -0
(zad 200 :low =1.0 :high 1.0)
:join-points t :point-radius 0 " . ;
istyle :£1ill :line-width .5) i < > g untitied 20 * %
(list-plot (loop for x from 0 to 6 by .01 collect (sin x))
tjoin-points t :point-radius 1)
(list-plot 160
(gen-ma-time-series 40 '(2.6) 1.0 :scale =1.0)
tjoin-points t :zero-based t)
(list-plot
(list + X
(log-of-gamma (rnd-number 20 1 5 :seed 2456))
(digamma (rnd-number 20 1 5 :seed 2456)) <7
(triganma (rnd-number 20 1 5 :seed 2456))) fs6 ' ' .
:join-points t :zero-based t) fs ; $ }
St A A N AN LA i, £
(list-plot v Fi /) VLI ER B4 Iy . f;&\, RETEIS U { ?
(gen-ma-time-series 100 '(6.0) 4.2) &3 P 1‘,’ \"' i % ' . 7
1join-points t :zero-based t) fs2 % .
<2
(list-plot 132 - 0 e 5%9 P . ”x:-am-n)-‘ 140 180 1%0
(list 1716 e (e e | bole || bl bl & - o -
(gen-accumulate (rnd 400 :low -1.0 :high 1.0)) - J"ﬁ I l""ﬂ' 1 i Wt i i
(gen-accumulate (rnd 400 :low =1.0 thigh 1.0)) Py \ Ie | |)‘[" |‘1| k A
(gen-accumulate (rnd 400 :low -1.0 :high 1.0)) ! j - r |t
(gen-accumulate (rnd 400 :low -1.0 :high 1.0)))) s1%2 | l |
[utf-8] OM: (Lisp) 3116 e . 3
Listener Clear
length-pitch-list-plot
#<length-pitch-graph #x30200646192D>
7 omn
omn

length-pitch-list-plot
#<length-pitch-graph #x30200637C5CD>
?

OM: (Lisp Listener)

http://opusmodus.com

def-score, name: gastone
compile-score gastone

? score-to-musicxml

nil

?

nil

?

OM: (Lisp Listener)

http://opusmodus.com

L owvomsmes | sweewes —
i < > I spectral.opmo % 11 < > pj Untitied 9 (Gastone)
177 Timeline Sheet ML 17 18 19 20 2 2 23 2 25 26 27 28
P s
733 Orchestration
i
rosn
(setf 6 - ==
piccolo picc flute flt alto-flute afl e ———— —
oboel obl oboe2 ob2 cor-anglais ob3 == —————— e —— e .
clarinetl cll clarinet2 cl2 clarinet3 cl3 bass-clarinet bcl . = T—— — #
b 1 bnlb 2 bn2 cont cbn ==
hornl hnl horn2 hn2 hornl hn3 hornd hnd 3 N
trumpetl tptl trumpet? tpt2 trumpetd tpt3 bass-trumpet btpt
trombone tbn tenor-tuba tba bass-tuba btba 2
harp-1lh hpl harp-rh hp2
violinl vnl violin2 wn2 viola va vicoloncello vc contrabass cb 1
) 60
(do~tineline ot
L o T o> MWTHNATT TR TR B T O e T Y e
piccolo e AXXXX = = = === === X XX X = = = X X) < > Untitied 8 (Gastone) +
flute (== === == =«=- XXX XXX XXX == ===« X XXX = ~-XXX) % — e
alto-flute [I XXX === XXXXXXXXXXXXXX = = = = =) ﬁ‘;f‘ | bf £ £
cboel (X X = = = « X X X X X X X X X X = = = « = XX XXX = = = = = = X X = =) M‘%' I— — -
oboe2 (XX XX - -~XXXXXXXXXX================ XXX -)
cor-anglais (X X X X X X = = = = X X X X X X = = = = = = = = = = = = = = = = XX X =) 0 .
clarinetl (X X X = = = = = = = = = XXX X === ===« ««cooaaa- X X X X) "~§§“
clarinet2 (X X X X X X = = = = = = = = = = = - - - w o o= XX X X)
clarinet3 (XXX XXX = = = = =2« ««ceeeeeeeeeeseeeeees X == =) 0
bagsg-clarinet (X X X X X X = = = = = = = XXXXXXXXXXXXXXXXXX~= === =) AN % t = t f —F—
bassoonl (X X X X X XX XX = = = = = = = =" = = = = = = = = = == ====XXX X) L L4 “,_*__F‘ # ¢ é
bassoon2 (XX XXX XXXX = ======o«ceeeeeeeea==-= P | g . g Y e e e eeeeeanene e aasee s e
contrabagsoon (X X X X X X X X X X X X X X = = = = = = = = = = = = = = = = X X = = = =) i~ r r 1 — —
horn1 (Kmmmmccmeccccccccccccece;cceca;eaaaan) P z prp p ® z
horn2 (XXX = = = = = = = = = = 0 = = = = = = == = == === = = = XXX~ ~) ! i IEFES 2 3
horn3 (X X X X = = = = =« = @ =« =« @ = = = = = = = = = = = « = = = = =X X X X X) P Vd
horné (XX XXX === ===« ce-eeeoeeeeeeeeeee==-=- XX - =) 0
truspetl (X X X X X = = = = = XX XXX XXX === =XXXXXXXX==XXXX) % - -
trunpet2 (X X X = = =« X XXX XXXXXXXX====XXXXXX====XXZXX)
trunpet3 (=== === XX X X XXX XXXXXXXXXXXXXXXXX-~-~-XXZXX)
bass-trumpet (X X X X = = = = X X X X = = = = = = = = = =« X X X X X X X X X = X X X X) c4§ - -
trombone (- = == = = = = e e e e e e e e e e e - .- - XXXX = === =)
tenor-tuba (X X X = X XXX = = = o= o=) 0 r 5 ' e "
bass-tuba (X X X = = = = = = = ¢ ¢ ¢ & e mmmsem-- XX XX = ===«) CLinky %—|7_1—¥—#—F—F—
harp-lh (x x X - XX XX~ XX XXX XXXXXXK = = = = = = = = X = = == =)) 4 wdw v e '
harp-rh (x x x = XX XX = X XXX XXX XXX XX = = =« « « « « = X = = = = =) T —— o r
violinl R) 0
[utf-8] OM: (Lisp) Qisd % = -
Listener Clear

“For years, CCL has been the Lisp of
choice for performing hardware
verification with ACL2. The hash
cons / static cons tables make it
particularly adept at analyzing the
Verilog itself.”

Ln garde, | isp naysayers!

1' = 3
.-
X
M
< 3\

Thank you.
Let’s hack more Lisp.

rme(@acm.org

