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Petalisp

The library Petalisp1 is a new approach to data parallel computing.

The Goal: Elegant High Performance Computing

• Programs that are beautiful and fast

• A programming model that is safe and productive

Drawbacks:

• Limited to operations on structured data

• Significant run-time overhead

1https://github.com/marcoheisig/Petalisp
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Using Petalisp



Strided Arrays

A strided array in n dimensions is a function

from elements of the cartesian product of n

ranges to a set of Common Lisp objects.

A range with the lower bound xL, the step size s

and the upper bound xU , with xL, s, xU ∈ Z, is

the set of integers

{ x ∈ Z | xL ≤ x ≤ xU ∧ (∃k ∈ Z) [x = xL +ks] }.
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Objects of type cl:simple-array are a special case of strided arrays.
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API 1/5 — First Class Index Spaces

To introduce parallelism, Petalisp always operates on index spaces, not

on individual array elements.

Notation: (σ (START [STEP] END) ...)

(σ (0 5) (0 3)) (σ (1 2 3) (1 2 3) (1 2 3))

Implementation detail: Petalisp can compute the union, difference and

intersection of arbitrary index spaces.
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API 2/5 — Transformations

A transformation is an affine-linear mapping from indices to indices.

Notation: (τ (INDEX ...) (EXPRESSION ...))

(τ (i j)

(0 j (- i 4)))

(τ (0 j k)

((+ k 4) j))

Implementation detail: Petalisp can compute the inverse and

composition of arbitrary transformations.
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API 3/5 — Moving Data

The -> operator allows to select, transform or broadcast data.

(-> 0 (σ (0 9) (0 9))) ; a 10 × 10 array of zeros

(-> #(2 3) (σ (0 0))) ; the first element only

(-> A (τ (i j) (j i))) ; transposing A

Admittedly, -> is a mediocre function name. Better suggestions are most

welcome!
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API 4/5 — Combining Data

The fuse and fuse* operator combine multiple arrays into one.

For fuse, the arguments must be non-overlapping. For fuse*, the value

of the rightmost array takes precedence on overlap.

(defvar B (-> #(2) (τ (i) ((1+ i)))))

(fuse #(1) B) ; equivalent to (-> #(1 2))

(fuse #(1 3) B) ; an error!

(fuse* #(1 3) B) ; equivalent to (-> #(1 2))
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API 5/5 — Parallel Operations

The final piece: Application of Common Lisp functions to strided arrays.

• The function α is basically cl:map for strided arrays.

• The function β is basically cl:reduce applied to the last dimension

of a strided array.

(α #’+ 2 3) ; adding two numbers

(α #’+ A B C) ; adding three arrays element-wise

(β #’+ #(2 3)) ; adding two numbers

(defvar B #2A((1 2 3) (4 5 6)))

(β #’+ B) ; summing the rows of B

Remark: No guarantees are made about when and how often the

functions passed to α and β are invoked.
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API Summary

All core functions at a glance:

• Index spaces, e.g. (σ (a b))

• Transformations, e.g. (τ (x y) (y (- x)))

• Data motion, e.g. (-> A (σ (2 5)))

• Data combination, e.g. (fuse* A B C)

• Parallel map, e.g. (α #’* A B)

• Parallel reduce, e.g. (β #’+ A)

This API is purely functional and declarative.

But how do we obtain values?
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API 6/5 — Triggering Evaluation

Petalisp provides two functions to trigger evaluation.

The compute function converts strided arrays into regular Common Lisp

arrays.

(compute (-> 0.0 (σ (0 1)))) => #(0.0 0.0)

(defvar A #(1 2 3))

(compute (β #’+ A)) => 6

(compute (-> A (τ (i) ((- i))))) => #(3 2 1)

Remark: There is also a schedule function for asynchronous evaluation.
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Example: Matrix Multiplication

The mathematical definition

Cij =
n∑

p=1

AipBpj

The corresponding Petalisp code

(β #’+

(α #’*

(-> A (τ (m n) (m 1 n)))

(-> B (τ (n k) (1 k n)))))

m
k

n BA
C

R
E
D
U
C
T
I
O
N

11



Implementation



Lazy Arrays are Data Flow Graphs

(jacobi u 1) => #<strided-array-fusion t (σ (0 9) (0 9))>

Internal representation:

fusion
(σ (0 1 9) (0 1 9))

reference
(τ (i j) (i j))

(σ (0 9 9) (0 9))

reference
(τ (i j) (i j))

(σ (1 8) (0 9 9))

application
*

(σ (1 8) (1 8))

immediate
(σ (0 9) (0 9))

reference
(τ (i j) ())

(σ (1 8) (1 8))

application
+

(σ (1 8) (1 8))

immediate
(σ)

#0A0.25

reference
(τ (i j) ((- i 1) j))

(σ (1 8) (1 8))

reference
(τ (i j) ((1+ i) j))

(σ (1 8) (1 8))

reference
(τ (i j) (i (- j 1)))

(σ (1 8) (1 8))

reference
(τ (i j) (i (1+ j)))

(σ (1 8) (1 8))

immediate
(σ (0 9) (0 9))
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From Arrays to Executable Code

How do we execute a graph?

1. Determine critical nodes

2. Determine subtrees

3. Lift references

4. Eliminate fusions

5. Construct kernels

6. Schedule & allocate

7. Compile & execute

8. Done!

immediate

application reference

application

reference

application

fusion

immediate

reference

reference

application compute
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Performance



On Performance

The long-term goal of Petalisp is to provide a programming model for

Petascale (1015 operations per second) systems.

The constant, high overhead of analysis and JIT-compilation seems to be

at odds with this goal.

However:

• Do not underestimate the power of memoization, hash-consing and

CLOS wizardry.

• Scheduling can often be done asynchronously.

• Petalisp’s analysis is independent of the problem size.
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Jacobi’s method: Python vs. C++ vs. Petalisp

Hardware: Intel Xeon E3-1275 CPU 3.6GHz
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Conclusions



Conclusions

Main Result: Our compilation strategy is feasible, with just about

10 – 500 microseconds overhead when calling compute.

Benefits:

• Clean separation between notation and execution.

• Unprecedented potential for optimization.

• Already faster than NumPy.

. . . all in just about 5000 lines of maintainable code.
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Future Work

My preliminary roadmap for the next years:

• More applications (simulations, image processing, machine learning)

• API finalization

• Sophisticated Scheduling

• Better Shared-Memory Parallelization

• Auto-Vectorization

• Distributed Parallelization

• . . .

• Make this a PhD thesis
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Thank you!

Questions or remarks?
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