
pLisp:	A	Friendly	Lisp	IDE	for	
Beginners	

Rajesh	Jayaprakash	
Tata	Consultancy	Services	

Chennai,	India	



Overview	
•  Basics	

–  What	is	pLisp?	
–  Motivation	
–  Features	

•  Internals	
–  Language	
–  Object	Model	
–  Compiler/Debugger	
–  Core	library,	Serialization,	FFI	

•  Future	work	
•  Demo	
•  Q&A	

2	



What	is	pLisp?	

•  A	Lisp	dialect	based	on	Common	Lisp	
•  An	integrated	development	environment	
•  Platforms	

– Linux,	Windows,	OS	X	

•  Open	source;	GPL	3.0	license	
•  Built	using	OSS	components	

– GTK+,	GTKSourceView,	libffi,	Boehm	GC,	TCC,	Flex,	
Bison	

3	

All trademarks are the properties of their respective owners 



Motivation	

•  To	serve	as	a	friendly	environment	for	
beginners	to	learn	Lisp	
– Graduate	to	Common	Lisp	and	its	
implementations/environments	

•  Inspired	by	Smalltalk	environments	
– Workspace/Transcript/System	Browser	
– Ability	to	edit	code	in	all	contexts	
–  Image	based	development	

•  GUI	state	part	of	image	

4	



pLisp	Features	

•  Graphical	IDE	with	context-sensitive	help,	syntax	
coloring,	autocomplete,	and	auto-indentation		

•  Native	compiler		
•  Continuations		
•  Exception	handling		
•  Foreign	function	interface		
•  Serialization	at	both	system-	and	object	level		
•  Package/Namespace	system			

5	



Beginner-Friendly	Features	
(some	inspired	by	Smalltalk)		

•  Workspace-Transcript	as	REPL	
•  System	Browser	

– Useful	for	navigating	between	multiple,	small	
functions	

•  Image-based	development	(incl.	GUI	state)	
•  Flexibility	w.r.t.	image-based	or	file-based	
development	

•  Ability	to	evaluate	code	in	all	contexts	
– Workspace,	Browser	code	panel,	Callers	Window,	File	
Browser	

–  ‘Live’	tutorial	

6	



pLisp	Internals	-	Language	

7	



Note	on	Array	Syntax	

•  Support	for	a	more	natural	array	syntax	
	(define a (array (5) 0) => [0 0 0 0 0]
(print a[0]) => 0
(define ma (array (2 2) 0)) => [[0 0] [0 0]]
(print ma[0 0]) => 0
(aset a[0] “Hello”) => “Hello”
(print a) => [“Hello” 0 0 0 0]
(aset ma[0 1] 3.14) => 3.14
(print ma) => [[3.14 0] [0 0]]

•  Realized	through	parser	tweaks	and	macros		

8	



pLisp	Internals	–	Object	Model	
•  Integers		
•  Floating	point	numbers		
•  Characters	
•  Strings	
•  Symbols	

•  Arrays	
•  CONS	cells	
•  Closures	
•  Macros	
		

4-bit	tag	
(n-4)	bit	value	

0001	for	
symbols,	
0010	for	
string	

literals,	etc.	

Object-
specific	

9	

Objects	represented	by	OBJECT_PTR,	a	typedef	for	uintptr_t



pLisp	Object	Model	(cont.)	

10	

Object	Type	 Object-Specific	Value	

Integer	 Address	of	allocated	integer	

Float	 Address	of	allocated	floating	point	number	

Character	 Numeric	representation	of	ASCII	value	(e.g.	65	for	‘A’)	

String	 Mutable	strings	are	arrays	(see	below);	for	immutable	
strings,	value	is	an	index	into	a	global	strings	array	

Symbol	 Value	is	split	into	a)	an	index	into	a	global	packages	array	
and	b)	an	index	into	the	strings	array	of	the	chosen	
packages	array	element		

Array	 Address	of	segment	of	size	n+1,	first	element	storing	the	
integer	object	denoting	the	array	size	n	

CONS	cell	 Address	of	first	of	two	contiguous	memory	locations	

Closure	 Address	of	linked	list	of	CONS	cells	containing	the	native	
function	object	and	the	closed-over	objects	

Macro	 Similar	to	above	

Native	function	 Address	of	native	function	pointer	



11	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Compiler	



Compiler	

12	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	



Compiler	

13	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	



Compiler	

14	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Conversion	of	mutable	variables	into	mutable	cells	



Compiler	

15	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Conversion	to	simple	intermediate	language	without	recursive	forms	



Compiler	

16	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

To	ensure	uniqueness	of	variable	names	



Compiler	

17	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Conversion	of	code	to	continuation	passing	style	



Compiler	

18	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Transformation	of	all	functions	to	closures	



Compiler	

19	

Macro		
Expansion	

Assignment	
Conversion	

Translation	
to	IL	

Renaming	
	

Closure	
Conv	

Lift	
Transform	

CPS	Conv	
	

Eliminate	function	nesting	and	lifting	all	functions	to	the	top	level	



Debugger	
•  Since	we	use	CPS,	all	functions	

invoked	for	an	expression	evaluation	
are	extant	

•  Debug	stack	is	also	a	pLisp	object	
•  Debug	stack	filters	out	the	internal	

continuation	functions	generated	by	
compiler	

•  At	present,	only	break/resume/
inspection	of	function	arguments	
supported	
–  Continuing/restarting	computation	

with	user-supplied	values,	access	to	
local	variables	are	being	considered	
for	future	work	

20	



pLisp	Core	Library	
•  Written	in	pLisp	itself	
•  Wrappers	for	primitives	so	that	they	can	be	used	as	first-class	

functions	(for	use	in	constructs	like	map)		

21	

•  Arithmetic	operators	
•  Logical	operators	
•  List	operations	
•  String	operations	
•  Array	operations	
•  FFI	
•  Iteration/Looping	



Serialization	
•  Image	serialization	in	JSON	format	
•  In	addition	to	persisting	objects	

–  GUI	elements	
–  Shared	libraries	
–  Open	pLisp	source	files	

•  Image	size	~	5	MB	(uncompressed)	
•  Serialized	objects	via	dummy	pointers		

–  References	to	a	linear	‘heap’	in	the	JSON	structure	
–  Effectively	equivalent	to	OBJECT_PTR in	the	live	system	

•  Serialization	of	integers	and	floats	
–  Image	stores	closure/macro	code	as	C	source	
–  Since	raw	addresses	do	not	carry	over	across	programming	sessions,	C	code	

cannot	refer	to	the	objects	directly	
–  Two	options	

•  Allocate	space	for	ints/floats	in	our	JSON	heap	
•  Generate	integer/float	constants	by	special	calls	(convert_int_to_object(),…)	

22	



Foreign	Function	Interface	

•  load-library	and	call-foreign-
function	

•  Argument	types	supported	
–  integers	
–  floats	
– characters	
– pointers	of	above	three	types	

•  Return	types:	void,	integers,	floats,	char	
pointers		

23	



Future	Work	

•  Enhancements	to	the	debugger	
– Continuing/restarting	computation	with	user-
supplied	values,	access	to	local	variables	

•  Object	Inspector	
•  Improve	portability	

– Same	image	should	be	usable	across	different	
platforms	

•  Traceability	between	code	version	and	image	
version		

24	



Demo	



Q&A	



Thank	you!	

Rajesh	Jayaprakash	
rajesh.jayaprakash@tcs.com	


