Lazy, Parallel Multiple Value Reductions in Common Lisp

Marco Heisig
Chair for System Simulation, FAU Erlangen-Nürnberg
01.04.2019
Before we begin ...
1. Motivation

2. The Function β

3. Implementation
Motivation
Reductions are Awesome!

(defun fold (f z l)
 (if (null l)
 z
 (fold f (funcall f (first l) z) (rest l))))

- **sum**
 (fold #'+ 0 numbers)

- **maximum**
 (fold #'max 0 non-negative-numbers)

- **reversal**
 (fold #'cons '() list)

- **filtering**
 (fold (lambda (i j) (if (oddp i) (cons i j) j)) '() list)
Problem #1 - Parallelism

- Long serial chain of dependencies.
- Execution time will always be \(\text{time}(f) \cdot \text{length}(l)\).
- Exascale computers expected in 2021.

"foldl and foldr Considered Slightly Harmful" – Guy Steele
Problem #2 - Multiple values

- Life, as it should be:

\[
\text{(reduce #'fn values :initial-value iv)}
\]

- Life, as it is:

\[
\text{(loop for value in values}
\text{ for elt across aux}
\text{ for idx from 0}
\text{ for acc-1 = (fn-1 value elt idx)}
\text{ for acc-2 = (fn-2 acc-1 elt idx)}
\text{ finally (return (values acc-1 acc-2)))}
\]

Goal: Reductions on multiple streams of data at once.
The Goals

- **Parallelism**
 \(O(\log(N)) \) runtime on a sufficiently parallel machine.

- **Multiple values**
 Gather multiple quantities from multiple sources.

- **Laziness**
 Programmers should not have to cripple their source code to avoid allocation of intermediate data.

- **Array Programming**
 Support for multi-dimensional arrays.

- **Performance**
 Competitive to a good cl:reduce.
Context: The Petalisp Project

- A Common Lisp library for elegant parallel programming.
- The core data structures are lazy, strided arrays.
- All operations are deterministic and purely functional.
- Petalisp has only four core operators. Parallel reduction is one of them.
- Arrays are evaluated by calling `compute`.

Interested?

```
(ql:quickload :petalisp)
```

https://github.com/marcoheisig/Petalisp

/join #petalisp
The Function β
Definition

(defun β (f array &rest more-arrays) . . .)

• f must accept $2k$ arguments and return k values, where k is the number of supplied arrays.
• All supplied arrays must have the same shape $S = r_1 \times \ldots \times r_n$, where each range r_k is a set of integers, $\{0, 1, \ldots, m\}$.
• Returns k arrays of shape $s = r_2 \times \ldots \times r_n$, whose elements are a combination of the elements along the first axis of each array.

It remains to clarify how we combine elements of the first axis.
The Reduction Rules

- k arrays of dimension n and shape S
- f is a function from $2k$ arguments to k values
- $n - 1$ dimensional output shape s

1. If the given arrays are empty, signal an error.*
2. If the first axis of each given array contains exactly one element, drop that axis and return the resulting k arrays of shape s.
3. Otherwise
 - Split each array into a lower and an upper half.
 - Recurse into each of the two halves.
 - Combine the $2k$ resulting arrays of shape s element-wise with f.
 - Return the resulting k arrays of shape s.
A Simple Example

Example: \((\beta \ #\ 'fn \ (\text{vector a b c d}))\)

- The number of arrays \(k\) is 1.
- The input shape \(S\) is \(\{0, 1, 2, 3\}\).
- The output shape \(s\) is \(\)\(\), i.e. the result is a scalar.
Parallelism

(\text{reduce } #'+ \text{ array}) \quad (\beta \ #'+ \text{ array})

\text{Number of Additions} \quad N - 1 \quad \quad N - 1

\text{Dependency Tree Depth} \quad N - 1 \quad \quad \lceil \log_2(N) \rceil

⇒ The function β is well suited for parallel computing.
Multiple Values

Computing both the maximum element and its index:

```
(defun max* (x)
  (β (lambda (lv li rv ri)
        (if (> lv rv)
            (values lv li)
            (values rv ri)))
   x (indices x 0)))
```

Look Ma, no loops!

```
(multiple-value-call #'compute (max* #(2 4 6 1 3)))
→ 6
→ 2
```
Multiple Values and Multiple Dimensions

Computing both the maximum element and its index:

```lisp
(defun max* (x)
    (beta (lambda (lv li rv ri)
        (if (> lv rv)
            (values lv li)
            (values rv ri)))
    x (indices x 0)))

...works for multi-dimensional arrays, too!

(m-v-c #'compute (max* #2A((2 4) (6 1))))
→ #(6 4)
→ #(1 0)
Implementation
Implementing $\beta$ is Hard

The function $\beta$ has many degrees of freedom:
- The number of supplied arrays $k$.
- The rank of the supplied arrays $d$.
- The element type of each supplied array.

And this is without taking lazy evaluation into account!

Our reference implementation is terribly slow, with gems like

```lisp
(values-list
 (subseq
 (multiple-value-list
 (multiple-value-call f
 (divide-and-conquer ls le)
 (divide-and-conquer us ue)))
 0 k))
)```
Making β Fast

- For classical sequence functions, it is common to define multiple specialized versions.
- We cannot use this trick, because we’d require DE^k versions, where D is the supported number of dimensions and E is the number of specialized array element types.

What we do instead:

 - Compute a normalized problem description.
 - Turn this problem description into efficient Lisp code.
 - Use `cl:compile` to generate a fast evaluator.
 - Invoke the compiled function on the supplied arrays.
 - Cache the compiled function, using the normalized problem description as key.

Result: $(\beta \ #\+ \ v)$ can actually inline #’+!
The Petalisp JIT-Compiler

Each Petalisp evaluation consists of the following steps:

1. Broadcasting, Type Inference, Shape Checking
2. Data-flow Optimization
3. IR-Conversion
4. Normalization
5. Scheduling
6. Code Generation
7. Compilation
8. Execution

- Thanks to memoization, the steps 6. and 7. can usually be skipped.
- The steps 5. and 8. can usually overlap.
- The challenge is getting the steps 1. to 4. fast enough.
- We are down to a few microseconds, but need to get better.
Optimization Showcase - a call to max*

(labels ((divide-and-conquer (min max))
 (if (= min max)
 (let ((index (+ min (* #:g3 #:g4))))
 (let* ((v (row-major-aref a0 index))
 (i (identity index)))
 (values v i)))
 (let ((mid (+ min (floor (- max min) 2))))
 (multiple-value-call
 (lambda (l0 l1 r0 r1)
 (multiple-value-bind (r0 r1)
 (funcall f l0 l1 r0 r1)
 (values r0 r1)))
 (divide-and-conquer min mid)
 (divide-and-conquer (1+ mid) max)))))))

...
Future Challenges

Challenges for the next months:

• Reduce the latency of compute.
• Add proper multi-threading.
• Further tweak the generated code.

Challenges for the next few years:

• Distributed Computing
• GPU offloading
Thank you!

Questions or remarks?