
An R7RS Compatible Module
System for Termite Scheme

ELS’20
Frédéric Hamel

Marc Feeley

Termite Scheme
• Built on top of Gambit Scheme

• Designed to simplify programming distributed systems
composed of a network of communicating nodes

• Uses the Actor model: each node executes one or more
threads reacting to messages received in their mailbox

2

network

Heterogeneous Systems
• A common situation is using nodes with different characteristics

(instruction set, peripherals, type and version of OS, etc)

• To allow code to run on any type of node the code is either
interpreted or compiled to a portable bytecode or compiled to
machine code for each type of node (the best in terms of run
time performance)

• How to send messages that contain code (procedures) in a
heterogeneous system that compiles to machine code?

3

network CODE
ARM/Linux

x86/Windows

• Gambit compiles to fast portable C code (machine/OS agnostic)

• Messages transferred between nodes are encoded by Gambit
using a machine independent sequence of bytes

• The serialization format supports procedures/closures,
continuations, sharing and cycles

• This simplifies programming:

• Remote Procedure Call (RPC)
• Task migration
• Hot code update

Gambit Features 4

#(1 2 3) #(1 2 3)
#x23 #x51 #x52 #x53

=> send a procedure/closure

=> send a continuation

=> send a proc./closure/cont.
 of code not previously known
 by destination node

Hot Code Update Example 5

server
(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

(recv
 (pattern
 action)
 ...)

(! dest msg)

(!? dest msg)

Hot Code Update Example 6

server
(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

Termite Scheme cheat sheet

get next message
from mailbox
and pattern match

send msg to dest

send (self tag msg)
to dest and receive
(tag result)

(recv
 (pattern
 action)
 ...)

(! dest msg)

(!? dest msg)

Hot Code Update Example 7

server
(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

Termite Scheme cheat sheet

send msg to dest

send (self tag msg)
to dest and receive
(tag result)

get next message
from mailbox
and pattern match

8

server
(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

(import (termite))

(node-init) ;; on fresh port

(define server
 (remote-service 'pong-server
 ":7000"))

(println (!? server 'PING))

PING

PONG

client

Add Support for Hot Code Update 9

(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t)))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

server

handling of the UPDATE
message that replaces
the behaviour of the
server with a new
continuation k contained
in the message

10

(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t)))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

server

handling of the UPDATE
message that replaces
the behaviour of the
server with a new
continuation k contained
in the message

...

(define new-server
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop)))))

(!? new-server (list 'MIGRATE server))

(println (!? server 'PING)) ;; HELLO

updater

code for new
behaviour of
pong service

11

(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t)))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

server

handling of the UPDATE
message that replaces
the behaviour of the
server with a new
continuation k contained
in the message

...

(define new-server
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop)))))

(!? new-server (list 'MIGRATE server))

(println (!? server 'PING)) ;; HELLO

UPDATE

MIGRATE

code for new
behaviour of
pong service

updater

12

(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t)))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

server

handling of the UPDATE
message that replaces
the behaviour of the
server with a new
continuation k contained
in the message

...

(define new-server
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop)))))

(!? new-server (list 'MIGRATE server))

(println (!? server 'PING)) ;; HELLO

UPDATE

MIGRATE

code for new
behaviour of
pong service

(let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop))

continuation

updater

13

(import (termite))

(node-init ":7000") ;; on port 7000

(define server ;; pong service thread
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'PONG))))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t)))

 (loop)))))

(publish-service 'pong-server server)

(thread-join! server) ;; wait for end

server

handling of the UPDATE
message that replaces
the behaviour of the
server with a new
continuation k contained
in the message

...

(define new-server
 (spawn
 (lambda ()
 (let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop)))))

(!? new-server (list 'MIGRATE server))

(println (!? server 'PING)) ;; HELLO

code for new
behaviour of
pong service

(let loop ()

 (recv

 ((from tag 'PING)
 (! from (list tag 'HELLO)))

 ((from tag ('UPDATE k))
 (! from (list tag 'ACK))
 (k #t))

 ((from tag ('MIGRATE dest))
 (call/cc
 (lambda (k)
 (!? dest (list 'UPDATE k))
 (! from (list tag 'ACK))))))

 (loop))

continuation

PING

HELLO

updater

• The original implementation of Termite Scheme allows unrestricted
serialization/deserialization of interpreted code

• Compiled code can only be deserialized when the receiving node
contains the same compiled code (by identifying each control point
symbolically, e.g. control point #5 in procedure foobar)

• This restriction

• limits changing the code base during execution

• hinders the use of fast compiled code in RPC

• precludes the use of hot code update of a compiled program

• Our work brings a solution to this issue in the form of a R7RS
compatible module system that installs and compiles code on
demand

Issues with Compiled code
14

Our Solution
• A module’s source code is hosted on a VCS server

accessible on the network, such as github or gitlab

• A hosted module’s name identifies its location and version:

• The hosted module’s name is embedded in the name of
procedures defined in the module (in the namespace)
allowing the deserialization process to locate, fetch and
compile the module’s source code if it is not yet installed:

15

(github.com/fred hello @2.0)

github.com/fred/hello@2.0
or equivalently

github.com/fred/hello@2.0#hi

namespace prefix of module name in module

Module Syntax 16

(define-library name

 (export <export spec>…)
 (import <import set>…)
 (begin <command or definition>…)
 (include <filename>…)
 (include-ci <filename>…)
 (include-library-declarations <filename>…)
 (cond-expand <cond expand features>…)

 (namespace <namespace>)
 (cc-options <options>…)
 (ld-options <options>…)
 (ld-options-prelude <options>…)
 (pkg-config <options>…)
 (pkg-config-path <path>…)

)

Standard
in R7RS

Extensions
(mostly for

build
options)

name does not mention
the version because it
is implicitly stored in
the VCS

Sample 2 Module Program 17

(define-library (github.com/fred hello)

 (export hi)

 (import (only (scheme base) define)
 (rename (scheme write) (display show)))

 (begin
 (define (hi str)
 (show "hello ")
 (show str)
 (show "\n")))) hello.sld version 1.0

(define-library (gitlab.com/zoo cats)

 (import (only (scheme base) define)
 (github.com/fred hello @1.0))

 (begin
 (define (main)
 (hi "lion")
 (hi "tiger")))) cats.sld version 2.0

Implementation
• The module system is implemented as an expansion to the

following Gambit preexisting forms:

• Dependencies registered with ##demand-module are handled by
the module loader that has been extended to download and
compile dependent hosted modules not currently installed

18

(##declare (block)) assume block compilation (no set!
 in other modules to local variables)

(##namespace ("ns#")) add ns# prefix to all free identifiers
(##namespace ("ns#" id1 id2 …)) add ns# prefix only to id1, id2, …
(##namespace ("ns#" (id1 id2) …)) rename id1 to id2, …

(##supply-module name) declare name of module to be name

(##demand-module name) register dependency on module name

Expansion of cats.sld 19

(##declare (block))

(##supply-module gitlab.com/zoo/cats@2.0)
(##demand-module github.com/fred/hello@1.0)

(##namespace ("gitlab.com/zoo/cats@2.0#")
 ("" define)
 ("github.com/fred/hello@1.0#" hi))

(define (main) ;; defines gitlab.com/zoo/cats@2.0#main
 (hi "lion") ;; calls github.com/fred/hello@1.0#hi
 (hi "tiger")) ;; same

(define-library (gitlab.com/zoo cats)

 (import (only (scheme base) define)
 (github.com/fred hello @1.0))

 (begin
 (define (main)
 (hi "lion")
 (hi "tiger")))) cats.sld version 2.0

expansion

Other Features
• Convenient other features not essential to Termite:

• Whitelist for allowing automatic installation from safe sites

• Manual module management tool integrated to interpreter

• Optional version: useful for development phase

• Module aliases can be defined (and are lexically scoped):

20

(define-module-alias (gitlab.com/zoo cats)
 (gitlab.com/zoo cats @2.0))

(define-module-alias (fh)
 (github.com/fred hello))

(import (gitlab.com/zoo cats)) ;; forces use of version 2.0

(import (fh @1.0)) ;; import (github.com/fred hello @1.0)

Evaluation
• Goal: determine the performance gain achieved by the now possible

compilation of the modules

• Used 3 standard Scheme benchmarks of various source code sizes
and execution time when interpreted, modified to be executed
through a RPC

• 4K (“Puzzle” program, ~4 Kbytes, ~0.1 sec)

• 40K (“Scheme” program, ~40 Kbytes, ~1 sec)

• 400K (“Compiler” program, ~400 Kbytes, ~10 secs)

• Used 3 machines, with different OS (linux/macOS), processors (x86/
ARM), and performance (Raspberry pi and desktop):

• MARM/Linux (slowest) / Mx86/macOS / Mx86/Linux (fastest)

21

Evaluation
• Used 3 execution scenarios:

• INTERPRETED: no compilation of module (original Termite)

• STEADY-STATE: compilation + module previously installed

• FIRST-INSTALL: compilation + module not previously installed

• Timing (ms) for MARM/Linux doing RPC to Mx86/Linux

22

INTERPRETED

STEADY-STATE

FIRST-INSTALL

Evaluation
• Used 3 execution scenarios:

• INTERPRETED: no compilation of module (original Termite)

• STEADY-STATE: compilation + module previously installed

• FIRST-INSTALL: compilation + module not previously installed

• Timing (ms) for MARM/Linux doing RPC to Mx86/Linux

23

INTERPRETED

STEADY-STATE

FIRST-INSTALL

 7x 17x 22x

Related Work
• Go: VCS hosted modules with versions, no dynamic install

• QuickLisp: need to register modules, not tied to deserial.

• Erlang: hot code update, only manual install of modules

• Nix: similar idea of keeping multiple versions of modules

• R6RS Scheme: has versions but not implicit from VCS

• Other module systems for Gambit include: Black Hole /
JazzScheme / Gerbil / SchemeSpheres

• None of these offers transparent deserialization of compiled
procedures and continuations needed for hot code update

24

