
Partial Evaluation Based CPS 
Transformation: An Implementation 

Case Study
Rajesh Jayaprakash

Tata Consultancy Services
Chennai, India



Overview

• Preliminaries
– Partial evaluation
– CPS

• Optimization of Naïve 
CPS
– Transformation example

• Compiler Pipeline
• PECPS Implementation
• Conclusion
• Q&A

2



Partial Evaluation

3

• Partition a program into static and dynamic parts
• Execute the static part at compile time so that there is less computation to 

do at run time
• A simplistic, contrived example:

int main(int argc, 
char **argv)

{
long i, a, b, c;
a = 48594;
b = 93763;
c = a + b;
scanf(“%ld\n”, &i);
printf(“%ld\n”, i + c);
return 0; 

}

int main(int argc, 
char **argv)

{
long i;
scanf(“%ld\n”, &i);
printf(“%ld\n”, i + 142357);
return 0; 

}



Continuation Passing Style

4

• Every function is passed one more argument, viz., the 
rest of the computation, embodied by a continuation 
function

• The function performs its computation, and invokes 
the continuation with the  result of this computation

• Example (from Paul Graham’s “On Lisp”):
(/ (- x 1) 2)

When (- x 1) is evaluated, the continuation is the 
function

(lambda (v) (/ v 2)



Continuation Passing Style (cont.)

5

• CPS makes all control flow explicit (e.g., order of 
evaluation of function arguments)

• Easier to introduce non-local control transfers like 
exceptions to the language

• The output of a CPS transformation is a function 
that performs the computation of the original 
expression, and invokes the continuation (passed 
as argument to the function) on the computation 
result



Continuation Passing Style (cont.)

6

(if t 1 2)

(lambda (k1)
((lambda (i1) (i1 t)
(lambda (test)
(if test

((lambda (i2) (i2 2)) k1)
((lambda (i3) (i3 3)) k1)))))



Optimizing a Naïve CPS Transform

7



Optimizing a Naïve CPS Transform

8

Beta-reduction: (𝛌V.M) N => M[V := N]



Optimizing a Naïve CPS Transform

9

Beta-reduction: (𝛌V.M) N => M[V := N]



Optimizing a Naïve CPS Transform

10

Beta-reduction: (𝛌V.M) N => M[V := N]



Optimizing a Naïve CPS Transform

11



Optimizing a Naïve CPS Transform

12



Optimizing a Naïve CPS Transform

13



What is pLisp?

• A Lisp dialect based on Common Lisp
• An integrated development environment
• Platforms

– Linux, Windows, OS X

• Open source; GPL 3.0 license
• Built using OSS components

– GTK+, GTKSourceView, libffi, Boehm GC, LLVM, 
Flex, Bison

14
All trademarks are the properties of their respective owners

https://github.com/shikantaza/pLisp

“The only thing left to do is to add whatever is needed 
to open a lot of little windows everywhere.”

- Christian Queinnec, Lisp in Small Pieces



Motivation for pLisp

• To serve as a friendly environment for 
beginners to learn Lisp
– Graduate to Common Lisp and its 

implementations/environments
• Inspired by Smalltalk environments

– Workspace/Transcript/System Browser
– Ability to edit code in all contexts
– Image based development

• GUI state part of image

15



pLisp Features

• Graphical IDE with context-sensitive help, syntax 
coloring, autocomplete, and auto-indentation 

• Native compiler 
• User-friendly debugging/tracing
• Image-based development
• Continuations 
• Exception handling 
• Foreign function interface  
• Package/Namespace system  

16



17

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

pLisp Compiler Pipeline



pLisp Compiler Pipeline

18

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv



pLisp Compiler Pipeline

19

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv



pLisp Compiler Pipeline

20

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

Conversion of mutable variables into mutable cells



pLisp Compiler Pipeline

21

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

Conversion to simple intermediate language without recursive forms



pLisp Compiler Pipeline

22

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

To ensure uniqueness of variable names



pLisp Compiler Pipeline

23

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

Conversion of code to continuation passing style



pLisp Compiler Pipeline

24

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

Transformation of all functions to closures



pLisp Compiler Pipeline

25

Macro 
Expansion

Assignment
Conversion

Translation
to IL

Renaming Closure
Conv

Lift
Transform

CPS Conv

Eliminate function nesting and lifting all functions to the top level



Regular Vs PE CPS Transformation

26

Design Concepts in Programming Languages (Turbak et al., 2008)



Regular Vs PE CPS Transformation 
(cont.)

27

Regular CPS Transform PE CPS Transform

CPS-transformed code is an 
abstraction in the object 
language

CPS-transformed code is an 
abstraction in the 
metalanguage

The abstraction is applied to a 
continuation in the object 
language (‘I_k’ in the previous 
slide)

The abstraction is applied to a 
continuation in the 
metalanguage (‘m’ in previous 
slide)

Made efficient by beta-
reductions and inlining in 
subsequent passes

Application of metalanguage 
abstraction already generates 
efficient code



Implementing the PE CPS Pass in pLisp

28

• pLisp is written in C
– Imperative
– FP abstractions (used in the function MCPS) not 

available
– Need to mimic OO features to unify the handling of 

the different language constructs
• Dispatching to the correct transformation function for each 

language construct

• Handling transforms involving variable number of 
sub-expressions (e.g., let, applications, and 
primops)



pLisp Objects and Representation
• Integers 
• Floating point numbers 
• Characters
• Strings
• Symbols

• Arrays
• CONS cells
• Closures
• Macros

4-bit tag
(n-4) bit value

0001 for 
symbols, 
0010 for 

string 
literals, etc.

Object-
specific

29

Objects represented by OBJECT_PTR, a typedef for uintptr_t



pLisp Objects and Representation (cont.)

30

Object Type Object-Specific Value

Integer Address of allocated integer

Float Address of allocated floating point number

Character Numeric representation of ASCII value (e.g. 65 for ‘A’)

String Mutable strings are arrays (see below); for immutable 
strings, value is an index into a global strings array

Symbol Value is split into a) an index into a global packages array 
and b) an index into the strings array of the chosen 
packages array element 

Array Address of segment of size n+1, first element storing the 
integer object denoting the array size n

CONS cell Address of first of two contiguous memory locations

Closure Address of linked list of CONS cells containing the native 
function object and the closed-over objects

Macro Similar to above

Native function Address of native function pointer



Metalanguage Interpreter – Object 
Model

31

Not all language constructs shown



Metalanguage Interpreter – Data 
Structures

32



PECPS Transform of ’if’

33

if(car_exp == IF)
{
metacont_closure_t *mcls = (metacont_closure_t *) 

GC_MALLOC(sizeof(metacont_closure_t));

mcls->mfn = if_metacont_fn;

mcls->nof_closed_vals = 3;
mcls->closed_vals = (OBJECT_PTR *)

GC_MALLOC(mcls->nof_closed_vals *
sizeof(OBJECT_PTR));

mcls->closed_vals[0]  = second(exp);
mcls->closed_vals[1]  = third(exp);
mcls->closed_vals[2]  = fourth(exp);

return mcls;    
}



PECPS Transform of ’if’ (cont.)

34



PECPS Transform of ’if’ (cont.)

35



PECPS Transform of ’if’ (cont.)

36



Handling LET (and similar clauses)

37



Conclusion and Future Work

• PECPS significantly faster than naïve CPS with 
optimizations

• Metalanguage interpreter is in C
– Implementing the transform in imperative style 

takes work (simulating closures, etc.)
– OO capabilities would have helped

• Explore a declarative style of generating the 
transforms
– S-expression templates with context ‘holes’  

38



Thank you!

Rajesh Jayaprakash
rajesh.jayaprakash@tcs.com


