
Proceedings of the 3rd European Lisp Symposium
Fundação Calouste Gulbenkian, Lisbon, May 6-7, 2010

C. Rhodes (ed.)

Sponsors
We gratefully anowledge the support given to the 3rd European Lisp Symposium by
the following sponsors:

Ravenbrook

!!!"#$%&!'()%"*'+

i

http://www.siscog.pt/
http://www.gulbenkian.pt/
http://alfa.fct.mctes.pt/
http://www.ist.utl.pt/
http://www.cm-lisboa.pt/
http://www.flad.pt/
http://www.bes.pt/
http://www.ravenpack.com/
http://www.ravenbrook.com/
http://www.clozure.com/
http://www.franz.com/
http://www.lispworks.com/

Organization

Programme Committee

Christophe Rhodes, Goldmiths, University of London, UK (air)

Marco Antonioi, Università Milano Bicocca, Italy
Giuseppe Aardi, Università di Pisa, Italy
Pascal Costanza, Vrije Universiteit Brussel, Belgium
Irène Anne Durand, Université Bordeaux I, France
Marc Feeley, Université de Montréal, Canada
Ron Garret, Amalgamated Widgets Unlimited, USA
Gregor Kiczales, University of British Columbia, Canada
António Leitão, Tenical University of Lisbon, Portugal
Ni Levine, Ravenbrook Ltd, UK
Sco McKay, ITA Soware, Inc., USA
Peter Norvig, Google Inc., USA
Kent Pitman, PTC, USA
Christianeinnec, Université Pierre et Marie Curie, France
Robert Strandh, Université Bordeaux I, France
Didier Verna, EPITA Resear and Development Laboratory, France
Barry Wilkes, Citi, UK
Taiii Yuasa, Kyoto University, Japan

Local Organization

António Leitão, Tenical University of Lisbon & INESC-ID, Portugal (air)

Edgar Gonçalves, Tenical University of Lisbon & INESC-ID, Portugal

ii

Contents

Anowledgments i

Messages from the airs iv

Going Meta: Reflections on Lisp, Past and Future 2
Kent Pitman

Reading the News with Common Lisp 3
Jason Cornez

Tutorial: Parallel Programming in Common Lisp 4
Pascal Costanza

Lots of Languages, Tons of Types 5
Mahias Felleisen

Verifying monadic second order graph properties with tree automata 7
Bruno Courcelle and Irène Durand

A DSEL for Computational Category eory 22
Aleksandar M. Bakić

Marrying Common Lisp to Java, and eir Offspring 38
Jerry Boetje and Steven Meler

Tutorial: Computer Vision with Allegro Common Lisp and VIGRACL 53
Benjamin Seppke and Leonie Dresler-Fiser

CLOX : Common Lisp Objects for XEmacs 63
Didier Verna

CLWEB: A literate programming system for Common Lisp 81
Alexander F. Plotni

iii

Message from the Programme Chair

Welcome to the third European Lisp Symposium.
is annual event is intended to be the principal Europeanmeeting for presentation of

novel resear, education perspectives in all topics related to the Lisp family of languages.
With the milestone of the first half-century of Lisp’s existence safely past (and what
language communities have the luxury of saying that?) thoughts naturally turn towards
the next milestone, one year at a time; as demonstrated at the first two events in this
series, in Bordeaux in 2008 and Milan last year, and again this year, the ability of Lisp to
generate interest, enthusiasm and growth gives grounds for being optimistic about the
reports looking ba at the first hundred years of Lisp history.

e programme commiee received ten submissions for this year’s symposium: ea
submission was reviewed by four members of the commiee, with a discussion period to
resolve conflicting reviews. At the end of this process, six submissions (five papers and
one tutorial proposal) were selected for presentation at the main tra of the symposium.
As in previous years, we will aim to build on the symposium by proposing a journal
special issue, to whi we will invite new contributions as well as extended versions of
the accepted papers in these proceedings.

I would like to thank the many people who have invested time and effort in making
this event a success: the authors of submissions, the reviewers, and in particular the
local organizing team under António Leitão, without whose work, aention to detail,
and recent experience as Programme Chair this symposium could not have happened.

Christophe Rhodes, London, April 2010

Message from the Organizing Chair

It gives me great pleasure to welcome you to Portugal, to Lisboa, and to the 3rd European
Lisp Symposium.

Historically, this region aracted people from all origins: Gallaeci, Lusitanians, Celtici,
Cynetes, Phoenicians, Carthaginians, Romans, Vandals, Suevi, Buri, Visigoths, Alans,
Arabs, Berbers, Saqaliba, and Jews. I’m confident the 3rd European Lisp Symposium
will contribute to make our city aractive to all tribes of Lispers.

e preparation of a symposium is a huge task and it would have been impossible
for me to organize the 3rd European Lisp Symposium without the help of a group of
dedicated people. My deepest thanks goes to Christophe Rhodes, an understanding com-
panion during the maddest of times; to Edgar Gonçalves, the man behind our Web site;
and to Cassilda Martinho and Ana Matias, who tried as best as it was humanly (and
legally) possible to isolate me from the bureaucratic requirements of su an endeavor.
I also thank the members of the ELS Steering Commiee: their suggestions were always
helpful. Last but not least, I want to personally thank João Pavão Martins and Ernesto
Morgado for all their encouragement and support, both now and over the last twenty-five
years.

Finally, I want to express my debt of gratitude for the generous support provided
by our sponsors, namely SISCOG, VILT, Clozure, Ravenbrook, LispWorks, Franz Inc.,
Ravenpa, Fundação Luso-Americana, Fundação para a Ciência e Tecnologia, Fundação
Calouste Gulbenkian, Banco Espírito Santo, Instituto Superior Técnico, and Câmara Mu-
nicipal de Lisboa. ey made it possible.

António Leitão, Lisbon, April 2010

iv

Invited contributions

Going Meta
Reflections on Lisp, Past and Future

Kent Pitman
HyperMeta Inc.

http://www.hypermeta.com/

Over a period of several decades, I have had the good fortune to witness and influence the
design, evolution, standardization and use of quite a number of dialects of Lisp, including
MACLISP, T, Seme, Zetalisp, Common Lisp, and ISLISP. I will offer reflections, from
a personal point of view, about what enduring lessons I have learned through this long
involvement.

Both the programming world and the real world it serves have anged a lot in that
time. Some issues that faced Lisp in the past no longer maer, while others maer more
than ever. I’ll assess the state of Lisp today, what allenges it faces, what pitfalls it
needs to avoid, and what Lisp’s role might and should be in the future of languages, of
programming, and of humanity.

2

http://www.hypermeta.com/

Reading the News with Common Lisp

Jason Cornez
RavenPa International

http://www.ravenpack.com/

e financial industry thrives on data: oceans of historical arives and rivers of low-
latency, real-time feeds. If you can know more, know sooner, or know differently, then
there is the opportunity to exploit this knowledge and make money. Today’s automated
trading systems consume this data and make unassisted decisions to do just that. But
even though almost every trader will tell you that news is an important input into their
trading decisions, most automated systems today are completely unaware of the news –
some data is missing. What tenology is being used to ange all this and make news
available as analytic data to meet the aggressive demands of the financial industry?

For around seven years now, RavenPa has been using Common Lisp as the core
tenology to solve problems and create opportunities for the financial industry. We
have a revenue-generating business model where we sell News Analytics – factual and
sentiment data extracted from unstructured, textual news. In this talk, I’ll describe the
RavenPa soware aritecture with special focus on how Lisp plays a critical role in
our tenology platform, and hopefully in our success. I hope to tou on why we at
RavenPa love Lisp, some allenges we face when using Lisp, and perhaps even some
principles of successful soware engineering.

3

http://www.ravenpack.com/

Tutorial: Parallel Programming in Common Lisp

Pascal Costanza
Soware Languages Lab
Vrije Universiteit Brussel
B-1050 Brussels, Belgium

Parallel programming is the wave of the future: It becomes harder and harder to increase
the speed of single-core processors, thereforeip vendors have turned to multi-core pro-
cessors to providemore computing power. However, parallel programming is in principle
very hard since it introduces the potential for a combinatorial explosion of the program
state space. erefore, we need different programming models to reduce the complexity
induced by concurrency.

Common Lisp implementations have started to provide low-level symmetric multi-
processing (SMP) facilities for current multi-core processors. In this tutorial, we will
learn about important parallel programming concepts, what impact concurrency has on
our intuitions about program efficiency, what low-level features are provided by current
Common Lisp implementations, how they can be used to build high-level concepts, and
what concepts Lispers should wat out for in the near future. e tutorial will cover ba-
sic concepts su as task parallelism, data parallelism and pipeline models; synroniza-
tion primitives ranging from compare-and-swap, over los and soware transactional
memory, to mailboxes and barriers; integration with Lisp-specific concepts, su as spe-
cial variables; and last but not least some rules of thumb for writing parallel programs.

4

Lots of Languages, Tons of Types

Matthias Felleisen
College of Computer Science
Northeastern University

Boston, MA 02115

Since 1995 my resear team (PLT) and I have been working on a language for creating
programming languages—small and large. Our code base includes a range of languages,
and others contribute additional languages on a regular basis. PLT programmers don’t
hesitate to pi our lazy dialect to implement onemodule and to link it to a strict language
for another module in the same system. Later they may even migrate one of the modules
to the typed variant during some maintenance task.

An expressive macro system is one key to this ries of languages. Starting with the
1986 introduction of hygienic macros, the SCHEMEworld has worked on turning macros
into tools for creating proper abstractions. e first part of my talk will briefly describe
this world of modern macros and its key aributes: hygiene, referential transparency,
modularity of macros, phase separation, and macro specification.

e second part of my talk will focus on how to equip LISP-like languages with a
sound type systems and that will illustrate the second key idea, namely, monitoring the
interactions between different languages. Our approa to type systems allows program-
mers to sti to their favorite LISP idioms. It mostly suffices to annotate functions and
structures with type declarations during maintenance work. To ensure the soundness of
this information even when higher-order values flow ba and forth between typed and
untyped modules, module boundaries are automatically equipped with soware con-
tracts that enforce type-invariants at all levels.

5

Mathematical Applications

Verifying monadic second order graph properties with tree
automata

Bruno Courcelle
courcell@labri.fr

Ir ène A. Durand
idurand@labri.fr

LaBRI, CNRS, Université de Bordeaux, Talence, France

Abstract: We address the concrete problem of verifying graph properties expressed in Monadic
Second Order (MSO) logic. It is well-known that the model-checking problem for MSO logic on
graphs is fixed-parameter tractable (FPT) [Cou09, Chap 6] with respect to tree-width and clique-
width. The proof uses tree-decompositions (for tree-widthas parameter) and clique-decompositions
(for clique-width as parameter), and the construction of a finite tree automaton from an MSO sen-
tence, expressing the property to check. However, this construction may fail because either the
intermediate automata are too big even though the final automaton has a reasonable size or the
final automaton itself is too big to be constructed:the sizesof automata depend, exponentially in
most cases, on the tree-width or the clique-width of the graphs to be verified. We present ideas
to overcome these two causes of failure. The first idea is to give a direct construction of the au-
tomaton in order to avoid explosion in the intermediate steps of the general algorithm. When the
final automaton is still too big, the second idea is to represent the transition function by a function
instead of computing explicitly the set of transitions; this entirely solves the space problem. All
these ideas have been implemented in Common Lisp.
Key Words: Tree automata, Monadic second order logic, Graphs, Lisp

1 Introduction

It is well-known from [DF99], [FG06],[CMR01] that the model-checking problem for
MSO logic on graphs is fixed-parameter tractable (FPT) with respect to tree-width and
clique-width (cwd).

The standard proof is to construct a finite bottom-up tree automaton that recognizes
a tree (or clique) decomposition of the graph. However, the size of the automaton can
become extremely large and cannot be bounded by a fixed elementary function of the
size of the formula unless P=NP [FG04]. This makes the problem hard to tackle in
practice, because it is just impossible to construct the tree automaton.

Systematic approaches have been proposed for subclasses ofMSO formulas with
limited quantifications in [KL09]. Our approach is not systematic; we consider specific
problems which we want to solve in practice, for large classes of graphs.

In the general algorithm, the combinatorial explosion may occur each time we en-
counter an alternation of quantifiers which induces a determinization of the current au-
tomaton. We want to avoid determinizations as much as possible. Initial ideas to achieve
this goal were first presented in [CD10].

7

We do not capture all MSO graph properties, but we can formalize in this way col-
oring and partitioning problems to take a few examples. In this article, we only discuss
graphs of bounded clique-width, but the ideas work as well for graphs of bounded tree-
width, in particular because if a graph has a tree-widthtwd ≤ k, it has a clique-width
cwd ≤ 2k+1. There is however an exponential blow-up.

The Autowrite1 software written in Common Lisp was first designed to check call-
by-need properties of term rewriting systems [Dur02]. For this purpose, it implements
tree (term) automata. In the first implementation, just the emptiness problem (does the
automaton recognizes the empty language) was used and implemented.

In subsequent versions [Dur05], the implementation was developed in order to pro-
vide a complete library of operations on term automata. The next natural step is to
solve concrete problems using this library and to test the limits of the implementation.
Checking graph properties is a perfect challenge for Autowrite.

Given a property expressed by a MSO formula, we have experimented the three
following techniques.
1. compute the automaton from the MSO formula and using the general algorithm,

2. compute directly the final automaton,

3. define the automaton with implicit transition function instead of computing its set
of transitions.

The first technique is the only one which is completely general in theory. The two
first techniques have the advantage that once the final automaton is computed (and
minimized), it can be memorized for further use. The minimalautomaton obtained in
both cases is unique: it depends only on the property and not on its logical description.
This can be helpful to verify that the two constructions are correct.

The limits are soon reached using the first technique. The second technique allows
to go somewhat further. With the third technique there is almost no more limitation (at
least not the same ones) because the whole automaton is neverconstructed.

In this paper, we do not address the problem of finding terms representing a graph,
that is, to find a clique-width decomposition of the graph. Insome cases, the graph of
interest may come with a “natural decomposition” from whichthe clique decomposition
of bounded clique-width is easy to obtain but for the generalcase the known algorithms
are not practically usable.

To illustrate our approach, we shall stick to a unique example along the paper al-
though we have made experiments with many more graph properties.

Path Property: Let Path(X1, X2) be the monadic second-order formula expressing
that, for an undirected graphG and setsX1 andX2 of vertices this graph, we have
X1 ⊆ X2, |X1| = 2 and there is a path inG[X2] linking the two vertices ofX1

2 .

1 http://dept-info.labri.fr/ ∼idurand/autowrite/
2 To simplify the presentation, we confuse somewhat syntax and semantics. We note in the same

way a variableXi and its values (sets of vertices)

B. Courcelle & I. Durand Verifying monadic second order graph properties…

8

v1v8

v7 v6
v2

v3

v4v5

Figure 1: A graph to test the propertyPath(X1, X2)

Consider the graph of Figure 1. IfX1 = {v3, v8} andX2 = {v1, v3, v4, v7, v8} the
propertyPath(X1, X2) holds forG: |X1| = 2 and there is a pathv8−v7−v1−v4−v3

from v8 to v3 with vertices inX2. The property does not hold ifX1 = {v3, v8} and
X2 = {v1, v3, v4, v8}.

Forcwd = 2, we were able to obtain the term automaton (see below how terms de-
scribe graphs) directly from the MSO formula starting from the automata representing
the basic operations, transforming and combining them withboolean operations, de-
terminization, complementation, projection, cylindrification. But it runs out of memory
for cwd = 3.

We were successful in constructing the direct automaton forcwd up to 4. But for
cwd = 5, the program runs out of memory because the constructed automaton is simply
too big.

For higher clique-width, there is no way of representing explicitly the transitions.
This is when the third method comes on stage. The really new idea here is to represent
the transition function precisely by a function. Consequently, there is no more need to
store the transitions. Transitions are computed on the fly when the automaton is running
on a given term (representing a graph). A graph of clique-width k havingn vertices is
represented by a termt of size|t| ≤ f(k).n. Hence, only|t| transitions are needed. This
number is in practice much less that the number of transitions of an automaton able to
process all possible terms denoting graphs of clique-width≤ k.

After recalling how graphs of bounded clique-width are represented by terms and
how properties on such graphs can be expressed in MSO, we shall describe our experi-
ments using Autowrite trying to construct automata verifying properties on graphs.

2 Preliminary

2.1 Term automata

We recall some basic definitions concerning terms and term automata. Much more in-
formation can be found in the on-line book [CDG+02]. We consider a finite signature

B. Courcelle & I. Durand Verifying monadic second order graph properties…

9

F (set of symbols with fixed arity) andT (F) the set of (ground) terms built from a
signatureF .

Example 1.LetF be a signature containing the symbols{a, b, adda b, rela b, relb a,⊕}

with
arity(a) = arity(b) = 0 arity(⊕) = 2

arity(adda b) = arity(rela b) = arity(relb a) = 1

We shall see in Section 2.3 that this signature is suitable towrite terms representing
graphs of clique-width at most2.

Example 2.t1, t2, t3 andt4 are terms built with the signatureF of Example 1.

t1 = ⊕(a, b)

t2 = adda b(⊕(a,⊕(a, b)))

t3 = adda b(⊕(adda b(⊕(a, b)), adda b(⊕(a, b))))

t4 = adda b(⊕(a, rela b(adda b(⊕(a, b)))))

We shall see in Table 1 their associated graphs.

Definition 1. A (finite bottom-up)term automaton3 is a quadrupleA = (F , Q, Qf , ∆)

consisting of a finite signatureF , a finite setQ of states, disjoint fromF , a subset
Qf ⊆ Q of final states, and a set of transitions rules∆. Every transition is of the form
f(q1, . . . , qn) → q with f ∈ F , arity(f) = n andq1, . . . , qn, q ∈ Q.

Term automata recognizeregular term languages[TW68]. The class of regular term
languages is closed by the boolean operations (union, intersection, complementation)
on languages which have their counterpart on automata. For all details on terms, term
languages and term automata, the reader should refer to [CDG+02].

2.2 Graphs as a logical structure

We consider finite, simple, loop-free, undirected graphs (extensions are easy)4. Every
graph can be identified with the relational structure〈VG, edgG〉 whereVG is the set of
vertices andedgG the binary symmetric relation that describes edges:edgG ⊆ VG×VG

and(x, y) ∈ edgG if and only if there exists an edge betweenx andy.
Properties of a graphG can be expressed by sentences of relevant logical languages.

For instance, “G is complete” can be expressed by

∀x, ∀y, edgG(x, y)

Monadic Second order Logic is suitable for expressing many graph properties.

3 Term automata are frequently called tree automata, but it isnot a good idea to identify trees,
which are particular graphs, with terms.

4 We consider such graphs for simplicity of the presentation but we can work as well with di-
rected graphs, loops, labeled vertices and edges

B. Courcelle & I. Durand Verifying monadic second order graph properties…

10

t1 t2 t3 t4

b

a a a

b

ba

ab b b

a

Table 1: Graphs corresponding to the terms of Example 2

2.3 Term representation of graphs of bounded clique-width

Definition 2. Let L be a finite set of vertex labels and we consider graphsG such that
each vertexv ∈ VG has a labellabel(v) ∈ L. The operations on graphs are⊕, the union
of disjoint graphs, the unary edge additionadda b that adds the missing edges between
every vertex labeleda to every vertex labeledb, the unary relabelingrela b that renames
a to b (with a 6= b in both cases). A constant terma denotes a graph with a single vertex
labeled bya and no edge.

LetFL be the set of these operations and constants.
Every termt ∈ T (FL) defines a graphG(t) whose vertices are the leaves of the

term t. Note that, because of the relabeling operations, the labels of the vertices in the
graphG(t) may differ from the ones specified in the leaves of the term.

A graph hasclique-widthat mostk if it is defined by somet ∈ T (FL) with |L| ≤ k.

Note also that if the termt describing a graphG does not use redundancies like
adda b(adda b(. . .)), then|t| = Θ(|VG|).

Example 3.For L = {a, b}, the corresponding signature has already be presented in
Example 1. The graphs corresponding to the terms defined in Example 2 are depicted
in Table 1.

Example 4.The graph of Figure 1 is of clique-width≤ 5. It can be represented with
the term built withL = {a, b, c, d, e} and shown on the left of Figure 2.

Let X1, . . . , Xm be sets of vertices of a graphG. We can define properties of
(X1, . . . , Xm). For example,

E(X1, X2) : there is an edge between somex1 ∈ X1 and somex2 ∈ X2;
Sgl(X2) : X2 is a singleton set;
X1 ⊆ X2 : X1 is a subset ofX2.

Definition 3. Let P (X1, . . . , Xm) be a property of sets of verticesX1, . . . , Xm graphs
G denoted by termst ∈ T (FL). Let Fm

L
be obtained fromFL by replacing each

constanta by the constantsaˆ w wherew ∈ {0, 1}m. For fixedL, let LP,(X1,...,Xm),L

be the set of termst in T (Fm
L

) such thatP (X1, . . . , Xm) is true inG(t), whereXi is

B. Courcelle & I. Durand Verifying monadic second order graph properties…

11

the set of vertices which corresponds to the leaves labeled by aˆ w where thei-th bit of
w is 1. Hencet ∈ T (Fm

L
) defines a graphG(t) and an assignment of sets of vertices to

the set variablesX1, ..., Xm.

Example 5.The graph of Figure 1 with vertex assignmentX1 = {v3, v8} andX2 =

{v1, v3, v4, v7, v8} can be represented5 by the term at the right of Figure 2; it satisfies
the path property. With vertex assignmentX1 = {v3, v8} andX2 = {v1, v3, v4, v8}, it
can be represented by almost the same term but withbˆ00[v7] instead ofbˆ01[v7]

but it does not satisfy the path property anymore.

add_c_d(
add_b_d(

oplus(

d[v1],

rel_d_b(

add_a_d(
oplus(

d[v2],

add_c_e(

oplus(

add_a_b(
add_b_c(

oplus(

a[v3],

oplus(

b[v4],
c[v5])))),

add_a_b(

add_b_e(

oplus(

a[v6],
oplus(

b[v7],

e[v8]))))))))))))

add_c_d(
add_b_d(

oplus(

dˆ01[v1],

rel_d_b(

add_a_d(
oplus(

dˆ00[v2],

add_c_e(

oplus(

add_a_b(
add_b_c(

oplus(

aˆ11[v3],

oplus(

bˆ01[v4],
cˆ00[v5])))),

add_a_b(

add_b_e(

oplus(

aˆ00[v6],
oplus(

bˆ01[v7],

eˆ11[v8]))))))))))))

Figure 2: Terms representing the graph of Figure 1

Example 6.The propertyPath(X1, X2) can be expressed by the following MSO for-
mula:

∀x[x ∈ X1 ⇒ x ∈ X2]∧

∃x, y[x ∈ X1 ∧ y ∈ X1 ∧ x 6= y ∧ ∀z(z ∈ X1 ⇒ x = z ∨ y = z)∧

∀X3[x ∈ X3 ∧ ∀u, v(u ∈ X3 ∧ u ∈ X2 ∧ v ∈ X2 ∧ edg(u, v) ⇒ v ∈ X3) ⇒ y ∈ X3]]

of quantifier-height5. Uppercase variables denote sets of vertices, and lowercase vari-
ables denote individual vertices.

3 Implementation of term automata

The part of Autowrite which is of interest for this work is theimplementation of term
automata together with some operations on these automata.

The main operations that are implemented are:

5 Note that the vertex number inside brackets is not part of thesignature; it is there to help the
reader make the correspondence between the leaves of the term and the vertices of the graph.

B. Courcelle & I. Durand Verifying monadic second order graph properties…

12

– Reduction (removal of inaccessible states), decision of emptiness; they have been
implemented in the very first version of Autowrite.

– Determinization, Complementation, Minimization, Union,Intersection which have
been added in subsequent versions of Autowrite.

– Signature transformation, Projection and Cylindrification which have been added
to deal with changes of signatures typically fromFm

L
toFm′

L
.

The object at the core of this library is the term automaton. The efficiency of many
operations depends heavily on the data structures chosen torepresent the states and
transitions of the automata. Since the first version of Autowrite [Dur02], much care
has been devoted to improve the representation of automata and the performances have
improved significantly. However, this work, which leads us to the limits of what is
computable in a human’s life, has also shown limits in our implementation, in terms of
space and time. In particular, we have realized that representing the set of transitions is
a crucial point. SInce, we use binary terms, the number of transitions isO(s2) wheres

is the number of states.
From the start, we have represented an automaton as a signed object, (an object with

a signature), a list of references to its states, a list of references to its final states and its
set of transitions.

3.1 Representation of states

The principle that each state of an automaton is representedby a unique Common Lisp
object has been in effect since the beginning of Autowrite. It is then very fast to compare
objects: just compare the references. This is achieved using hash-consing techniques.
On the contrary to systems like MONA [KM01], a state is not just represented by a
number, it can also have constituting elements. The first reason for this choice is that
each state has a meaning which can be better expressed by any Lisp object than by
a simple number. The second reason is that states can themselves contain states from
other automata when building an intersection automaton forexample. The third reason
will me made clear in Section 6 when we define the transition function as a function
instead of defining it as a set of transitions.

Often we need to representsetsof states of an automaton. We have two ways of
representing sets of states,bit vectorsor containersof ordered states.

Bit vectors are faster, but tend to use more space; containers are slower but can be
used when bit vectors lack of space.

Each state has an internal unique number which allows us to order states in the
containers. Operations on containers (equality, union, intersection, addition of a state,
...) can then use algorithms on sorted lists which are faster.

B. Courcelle & I. Durand Verifying monadic second order graph properties…

13

q3q1a

b

f

q2

q1

q2

q3 q3q2

q3

q1q2

Figure 3: Dag representation of the transitions

3.2 Transitions

The definition itself of an automaton suggests that the transition function should be
represented by a set of transitions. And it is indeed the onlysolution that we had in
mind when we started writing Autowrite. Whatever representation is chosen to store
the transitions, it must offer a functionδ(f, states) which according to a symbolf of
arity n and a list of statesq1, . . . , qn returns the target state (or a set of target states
in a non-deterministic case)q of the transitionf(q1, . . . , qn) → q stored in the data
structure.

However, the transition function is really a function: if the states have a meaning as
specified in Section 3.1, then in some cases,δ(f, states) can be written as a function
which computes the target stateq according tof and the contents of the statesq1, . . . , qn

without the transition being stored in any data structure. We shall explain this novel
implementation in Section 6.

The first representation chosen to represent a set of transitions is a hash-table: the
key is the list(fq1 . . . qn) (whereqi is in fact the reference to the object representing
the stateqi) and the value is the target stateq of the transitionf(q1, . . . , qn).

For instance, the following set of transitions:

a → q1 f(q1, q2, q3)→q1

b → q2 f(q1, q3, q2)→q3

f(q1, q2, q2)→q2

yields a hash-table with 5 entries corresponding to the 5 left-hand-sides of the transi-
tions. The advantage of this representation is that the left-hand-sides are kept together
and that we can easily take into account commutative symbols. However, when the
symbols have arityn ≥ 2 the table may become of size|Q|n. In order, to reduce the
size of the data structure representing the set of transitions, we have also considered a
dag representation which is illustrated by Figure 3.

We now turn our attention to the problem of computing an automaton accepting the
terms overFL for fixedL representing graphs verifying an MSO property.

B. Courcelle & I. Durand Verifying monadic second order graph properties…

14

4 The general method (first method)

The first technique consists in applying the general algorithm which transforms a MSO
formula into an automaton. The algorithm can be applied recursively until an atomic
formula is reached. In order to process a MSO formula, we musttranslate it into a
formula without first-order variables (which has the same quantifier-height) and which
uses only boolean operations (and, or, negation) and simpleatomic properties likeX =

∅, Sgl(X) (denoting thatX is a singleton set),Xi ⊆ Xj for which an automaton is
easily computable.

Some standardization on the names of set variables is then necessary in order to
apply our operations.

The formula given in Example 6 is thus translated as shown below. Note that this
translation is done by hand but could be automated as this is in MONA [KM01].

Example 7.

Path(X1, X2) = X1 ⊆ X2 ∧ P1(X1, X2)

P1(X1, X2) = ∃X3, X4, P2(X1, X2, X3, X4)

P2(X1, X2, X3, X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X1 ∧ X4 ⊆ X1 ∧ X3 6= X4

∧|X1| = 2 ∧ P4(X2, X3, X4)

P4(X2, X3, X4) = ¬P5(X2, X3, X4)

P5(X2, X3, X4) = ∃X ′
1, P6(X

′
1, X2, X3, X4)

P6(X
′
1, X2, X3, X4) = X3 ⊆ X5 ∧ ¬X4 ⊆ X5 ∧ P7(X

′
1, X2)

P7(X
′
1, X2) = ¬P8(X

′
1, X2)

P8(X
′
1, X2) = ∃X3, X4, P9(X

′
1, X2, X3, X4)

P9(X
′
1, X2, X3, X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X ′

1 ∧ X3 ⊆ X2 ∧ X4 ⊆ X2∧

Edge(X3, X4) ∧ ¬X4 ⊂ X ′
1

4.1 Basic automata for graph properties

We have implemented constructions parametrized byL of the basic automata which
may appear as atomic formulas in our MSO sentences (the leaves of our MSO formu-
las), among them:

setup-singleton-automaton (cwd m j) Sgl(Xj)

setup-edge-automaton (cwd m i j) Edge(Xi, Xj)

setup-subset-automaton (cwd m j1 j2) Xj1 ⊆ Xj2

setup-nequality-automaton (cwd m j1 j2)Xj1 6= Xj2

setup-equality-automaton (cwd m j1 j2)Xj1 = Xj2

setup-snequality-automaton (cwd m j1 j2)Sgl(Xj1) ∧ Sgl(Xj2) ∧ Xj1 6= Xj2

setup-cardinality-automaton (cwd m j1 i)card(Xj1) = i

For example, a call to setup-singleton-automaton(2, 2, 1) returns an automaton work-
ing on terms representing graphs of clique-width at most2 (with L = {a, b}) with two

B. Courcelle & I. Durand Verifying monadic second order graph properties…

15

NAUTOWRITE> (setf * a* (setup-singleton-automaton 2 2 1))
Singleton-X1 2 states 17 rules
NAUTOWRITE> (show * a*)
Automaton Singleton-X1
States q0 q1
Final States q1
Transitions
aˆ00 -> q0 bˆ00 -> q0 rel_a_b(q0) -> q0 rel_b_a(q0) -> q0
aˆ01 -> q0 bˆ01 -> q0 rel_a_b(q1) -> q1 rel_b_a(q1) -> q1
aˆ10 -> q1 bˆ10 -> q1 add_a_b(q0) -> q0 oplus(q0,q1) -> q1
aˆ11 -> q1 bˆ11 -> q1 add_a_b(q1) -> q1 oplus(q1,q0) -> q1
oplus(q0,q0) -> q0
NIL
NAUTOWRITE> (setf * t * (input-term "add_a_b(oplus(aˆ10,bˆ00))"))
add_a_b(oplus(aˆ10,bˆ00))
NAUTOWRITE> (recognized-p * t * * a*)
!q1
NAUTOWRITE> (recognized-p * t * * a*)
q1
NAUTOWRITE> (setf * nt * (input-term "add_a_b(oplus(aˆ10,bˆ10))"))
add_a_b(oplus(aˆ10,bˆ10))
NAUTOWRITE> (recognized-p * nt * * a*)
NIL

Table 2: Automaton forSgl(X1) with m = 2 andcwd = 2

sets of verticesX1 andX2 and recognizing terms such thatX1 is a singleton, for in-
stance the termadd_a_b(oplus(aˆ10,bˆ00)) .An example of such call is shown
in Table 2.

4.2 The recursive algorithm

Given a formulaφ = P (X1, . . . , Xm), we want to compute the associated automaton
A(φ).

– If the formula is atomic then we call the function which computes the automaton.
For instance, inP9(X

′
1, X2, X3, X4), Sgl(X3) is computed by

setup-singleton-automaton (cwd, 4, 4) .

– If the formula is a disjunctionφ = φ1∨φ2, we compute the union ofAφ1
andAφ2

.

– If the formula is a conjunctionφ = φ1 ∧ φ2, we compute the intersection ofAφ1

andAφ2
.

– If the formula is a negationφ = ¬(φ′), we complement the automatonAφ′ . To be
complementedAφ′ must be determinized.

– If the formula is an existential formula of the form∃Xj , P (X1, . . . , Xm), we do a
projection ofAP (X1,...,Xm) on (1, . . . , i − 1, i + 1, m) which implies a shift in the
indices of variablesXi+1, . . . Xm.

– If the formulaφ = P (X1, . . . , Xm) does mentionXj , we can obtainAφ by a
cylindrification of the automatonAP (X′

1
,...X′

m−1
) (with X ′

i = Xi for 1 ≤ i < j

andX ′
i = Xi+1 for j ≤ i < m) on thej-th components.

B. Courcelle & I. Durand Verifying monadic second order graph properties…

16

Intersection which is handled by saturation (producing a reduced automaton) pre-
serves determinism. The bottleneck of this general algorithm is the necessity of deter-
minizing an automaton in order to complement it. Each determinization can increase
exponentially the number of states.

Most properties that we tried could not be tested for graphs of clique-width strictly
higher than 2 with this method. It is nevertheless interesting to implement it because it
is completely general and for small clique-width we can use the computed automaton
for a comparison with the automaton that we obtain using the second method that we
are presenting now. The automaton can also be compared with the automaton computed
by MONA (see Section 7).

5 The second method: direct construction of the final automaton

The last remark motivates the following development. For some graph properties ex-
pressible in MSO, the corresponding automaton can be described directly by a set of
states and a description of the transition function on thesestates. Once a proof has been
made that the description is correct (it produces an automaton which recognizes the
terms satisfying the property), one can directly compute the automaton without using
the MSO sentence. Chapter 6 of the book in progress [Cou09], gives such descriptions
for several properties among themPath(X1, X2). As said in the introduction, we shall
stick to the path property although we can handle many others.

We shall not go into all the details of the construction of theautomaton forPath(X1, X2),
but we shall present at least a description of its states and how the transitions function
works.

Let α(G, x) = {labelG(y) | y ∈ VG andx
∗

−G y} ⊆ L.

Let β(G) = {(labelG(x), labelG(y)) | x, y ∈ VG andx
∗

−G y} ⊆ L × L.

Q = {Ok, Error} ∪ {(0, B) | B ⊆ L× L}∪

{[1, A, B] | ∅ 6= A ⊆ L, B ⊆ L× L}∪

{[2, {A, A′}, B] | A, A′ ⊆ L, A 6= ∅, A′ 6= ∅, B ⊆ L× L}

The meaning of these states is described in Table 3. We have2cwd2/2 < |Q| < 2cwd2+2

wherecwd = |L| ≥ 2.
The transition rules are shown in Table 4. In this table, we use the auxiliary func-

tions (⊗, f , g) which can be found in [Cou09].
With the direct construction, we were first able compare the obtained automaton

with the automaton obtained with the general method forcwd = 2. Then we solved the
problem forcwd ∈ {3, 4}.

cwd 2 3 4 5
A/min(A) 25 / 12214 / 1273443 / 2197out

B. Courcelle & I. Durand Verifying monadic second order graph properties…

17

State q Property Pq
[0, B] X1 = ∅, B = β(G(t, X2)), X1 = {v} ⊆ X2, A = α(G(t, X2), v)

[1, A, B] B = β(G(t, X2)), X1 = {v, v′} ⊆ X2, v = v′, A = α(G(t, X2), v),

[2, {A, A′}, B] A = α(G(t, X2), d), B = β(G(t, X2)) there is no path betweenv andv′ in G(t, X2)

Ok P (X1, X2) holds
Error All other cases

Table 3: Meaning of states for the path propertyPath(X1, X2)

Transition rules Conditions
cˆ 00 → [0, ∅]

cˆ 00 → [0, {(a, a)}] c ∈ L

cˆ 11 → [1, {a}, {(a, a)}]

rela b(Ok) → Ok

rela b([0, B]) → [0, ha,b(B)] whereha,b

rela b([1, A, B]) → [1, ha,b(A), ha,b(B)] replacesa by b

rela b([2, {A, A′}, B]) → [2, {ha,b(A), ha,b(A
′)}, ha,b(B)]

adda b(Ok) → Ok B′ = f(B, a, b)

adda b([0, B]) → [0, B′] D = g(A, B, a, b)

adda b([1, A, B]) → [1, D, B′] D′ = g(A′, B, a, b)

adda b([2, {A, A′}, B]) → [2, {D, D′}, B′] (A ⊙ ((a ⊗ b) ◦ B)) ∩ A′ = ∅

adda b([2, {A, A′}, B]) → Ok (A ⊙ ((a ⊗ b) ◦ B)) ∩ A′ 6= ∅

⊕(Ok, [0, B]) → Ok

⊕([0, B], Ok) → Ok

⊕([0, B], [0, B′]) → [0, B′′]

⊕([0, B], [1, A, B′]) → [1, A, B′′]

⊕([1, A, B], [0, B′]) → [1, A, B′′] B′′ = B ∪ B′

⊕([1, A, B], [1, A′, B′]) → [2, {A, A′}, B′′]

⊕([0, B], [2, {A, A′}, B′]) → [2, {A, A′}, B′′]

⊕([2, {A, A′}, B′], [0, B]) → [2, {A, A′}, B′′]

Table 4: Transition rules of the automaton forPath(X1, X2)

B. Courcelle & I. Durand Verifying monadic second order graph properties…

18

However, with higher values of clique-width (cwd ≥ 5), we are confronted to a
memory space problem. And indeed the number of states is at least252/2 = 212 ≤ |Q|

which gives at least225 transitions (see [Cou09], Chapter 6).
We have presented experiments only with the path property. But we have tried sev-

eral other properties6 like connectivity, existence of a cycle,k-colorability, ... Most
of the time, the limit is aroundcwd = 3. The conclusion is that for greater values of
clique-width, it is not possible to compute in extenso the transitions of the automata
because its number of states is simply too big (exponential in cwd or more). In a few
cases, we do not run out of memory but the program runs “for ever” (3-colorability with
cwd = 3).

6 The third method: fly-automata

The problems of space (for most properties) or time (coloring property) disappear if
we represent transitions with a function. Defining such transitions (which we callfly-
transitions) consists in defining a lisp function which applies to a symbol f and a list of
states(q1, . . . , qn) and returns the target stateq of the transitionsf(q1, . . . , qn) → q.

This is easily done from the description of the direct construction of the automaton
as the one given in Section 5. Actually, the code that is written to define a concrete
transition can be directly called in the fly-transitions function.

States that will be accessed when running the automaton on a particular term are
initially not known. In most cases, we do not even want to compute the list of accessible
states of the automaton because, this list is simply too big to be computed. The states are
formally described in a compact way; the ones that are useless will never be computed.
The situation is the same for the list of final states. The easiest way to represent final
states is also to use a predicate which tells whether a state is final or not.

So a fly-automaton is just a signed object which has a transition function and a final
state predicate. Of course Common Lisp is very suitable to represent objects containing
functions since functions are first-class objects. Defininga fly-automaton reduces to
defining the transition function and final state predicate.
(defun fly-path-automaton (cwd)

(make-fly-automaton-automaton
(setup-vbits-signature cwd 2)
(lambda (root states)

(make-state
(path-transitions-fun root (mapcar #’state-contents sta tes))))

(lambda (state)
(and (ok-p (state-contents state)) state))

:name (format nil "˜A-PATH-X1-X2-fly-automaton" cwd)))

The transition function of union and intersection automatais an anonymous function
which calls the respective functions of the combined automata. Note that a concrete
automaton can be transformed into a fly automaton: the transition function simply looks

6 See some results at
http://dept-info.labri.fr/ ∼idurand/autowrite/Graphs/Graphs.pdf

B. Courcelle & I. Durand Verifying monadic second order graph properties…

19

for the transition in the stored transitions. But the converse may fail for space and time
reasons. We did not reach any limitation using fly-automata which we tried up tocwd =

18. We could run the automata on terms representing terms on anygraph we had a
term representation for. Our problem right now is to find big graphs with their clique-
decomposition in order to perform tests.

In this paper we did not address the difficult problem of finding a clique-width
decomposition of a graph (so the clique-width) of a graph.

This problem was shown to be NP-complete in [FRRS06]. [Oum08] gives polyno-
mial approximated solutions to solve this problem. More canbe found in [Cou09].

Often, when automata are used (in compilation for instance), the automaton is
“small” and the input is much much larger. In the present case, it is the opposite. In
particular, because we do not know how to decompose very large graphs, we are only in
position of using our tools for relatively small graphs (say100 vertices). Consequently,
there is no overhead in using fly-automata. Also, it is not important that the terms repre-
senting graphs be optimal because the computation “on the fly” of transitions does not
depend much on the total number (|L|) of vertex labels.

7 Related work

Monadic second-order logic on finite and infinite words and binary terms is imple-
mented in the software MONA [KM01] developed by Klarlund andothers. Its use for
checking graph properties is considered by Soguet in [Sog08]. MONA, with some tech-
nical adaptations, is usable for the first technique: it is able to automatically compute the
automaton corresponding to an MSO formula; in that it seems quicker than Autowrite.
States are represented by an integer. MONA works with binaryterms only which is ok
for graphs represented with a signature with a maximum arityof 2 (⊕). The symbols
with higher arity are simply transformed into binary symbols which have fake chil-
dren when used in terms. The transitions are represented by atwo dimensional array.
The cell(i, j) contains a binary decision diagram (BDD) which leads for every symbol
f ˆ w to the target statek such thatf ˆ w(i, j) → k. MONA has deterministic transitions
only. When a projection is performed, the determinization is done at the same time. Au-
towrite can deal with symbols of any fixed arity. An importantpoint is that Autowrite
has both deterministic and non deterministic automata. This is very useful when the
deterministic automaton corresponding to the desired property cannot be computed by
lack of space. In that case, Autowrite will be able to check the property with the non
deterministic automaton. See also [Cou09] about this last point.

8 Perspectives

We have still many more properties of graph to experiment among them connectivity.
For the automata for which we could compute the set of transitions, it would be nice

B. Courcelle & I. Durand Verifying monadic second order graph properties…

20

to create an on-line library of automata corresponding to properties available to the
community of researchers. There is still a lot to be done for improving the efficiency
of Autowrite. We have maintained several data structures for representing the automata
transitions but have not yet conducted systematic tests to evaluate their performances.
In order to do more experiments with our fly-automata, we are currently working on a
program for generating automatically random or particulargraphs (with their decom-
positions) of arbitrary clique-width.

References

[CD10] Bruno Courcelle and Irène Durand. Tractable constructions of finite automata from
monadic second-order formula. InWorkshop on Logical Approaches to Barriers in
Computing and Complexity, Greifswald, Germany, February 2010.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. 2002. Draft, available
from http://tata.gforge.inria.fr .

[CMR01] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of
graph enumeration problems definable in monadic second-order logic. Discrete Appl.
Math., 108(1):23–52, 2001.

[Cou09] Bruno Courcelle. Graph structure and monadic second-order logic. Available at
http://www.labri.fr/perso/courcell/Book/CourGGBook. pdf
To be published by Cambridge University Press, 2009.

[DF99] Rod G. Downey and Michael R. Fellows, editors.Parameterized Complexity.
Springer-verlag, 1999.

[Dur02] Irène Durand. Autowrite: A tool for checking properties of term rewriting systems.
In Proceedings of the 13th International Conference on Rewriting Techniques and
Applications, volume 2378 ofLecture Notes in Computer Science, pages 371–375,
Copenhagen, 2002. Springer-Verlag.

[Dur05] Irène Durand. Autowrite: A tool for term rewrite systems and tree automata.Elec-
tronics Notes in Theorical Computer Science, 124:29–49, 2005.

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited.Annals of Pure and Applied Logic, 130:3–31, 2004.

[FG06] J. Flum and M. Grohe.Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[FRRS06] M. Fellows, F. Rosamond, U. Rotics, and S. Szeider.Clique-width minimization is
np-hard. InProceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, pages 354–362, Seattle, 2006.

[KL09] Joachim Kneis and Alexander Langer. A practical approach to Courcelle’s theorem.
Electron. Notes Theor. Comput. Sci., 251:65–81, 2009.

[KM01] Nils Klarlund and Anders Møller.MONA Version 1.4 User Manual. BRICS, Depart-
ment of Computer Science, Aarhus University, January 2001.Notes Series NS-01-1.
Available fromhttp://www.brics.dk/mona/ . Revision of BRICS NS-98-3.

[Oum08] Sang-Il Oum. Approximating rank-width and clique-width quickly. ACM Trans.
Algorithms, 5(1):1–20, 2008.

[Sog08] David Soguet. Génération automatique d’algorithmes linéaires. Doctoral dissertation
(in French), Spcialit: Informatique, July 2008.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic.Mathematical Systems Theory, 2:57–81,
1968.

B. Courcelle & I. Durand Verifying monadic second order graph properties…

21

A DSEL for Computational Category Theory

Aleksandar M. Bakić

a bakic@yahoo.com

Abstract Computational category theory is a branch of computer science devoted
to the study of algorithms which can be stated in terms of category theory concepts.
We describe a language embedded in Common Lisp, CL-CAT, that allows for succinct
expression of such algorithms. Code snippets and examples are presented to help bring
this abstract topic closer to practice.

Key Words: Lisp, category theory, domain-specific languages

1 Introduction

Category theory is a relatively young branch of mathematics that has been

increasingly used in computer science as a modeling tool [4]. Computational

category theory (CCT), on the other hand, is a branch of computer science

devoted to the study of algorithms which can be stated in terms of category

theory concepts [1]. However, category theory already has applications beyond

computer science [11, 12], hence the motivation for using CCT in other domains.

A domain-specific embedded language (DSEL) allows to express algorithms

of a particular domain more clearly than a general-purpose language, at the

same time reusing the infrastructure and tools of the host language [5]. In Lisp,

macros and higher-order functions are the most frequently used means for build-

ing DSELs [6]. Some DSELs are called libraries or frameworks despite their use

to express computation, which is the purpose of a programming language.

In this paper, we describe a CCT DSEL embedded in Common Lisp, named

CL-CAT, that has been designed around algorithms presented in [1]. Thanks

to its lending support to mixing object-oriented and functional programming

paradigms, CLOS [2, 7] is the main ingredient of CL-CAT: class inheritances

and precedences are used for CCT entities, and method combinations and multi-

methods simplify the expression of certain function computations.

The next section mentions similar software known to us. The description of

the design and implementation, and examples of CL-CAT follow in Sections 3

and 4. Basic knowledge of Common Lisp, CLOS and category theory is required.

The exposition is informal, hoping to strike the intuition of a software engineer.

We close with hindsight remarks.

22

2 Related Work

The CCT implementation of [1] uses SML, a general-purpose functional lan-

guage, and is backed by informal proofs. CL-CAT builds upon its approach and

emphasizes the practical side, conceptual integrity and reuse.1 A survey of for-

malizations of category theory, such as in proof assistants, is given in [3].

SpecwareTM is a commercial tool that supports the modular construction of

formal specifications and their refinement into executable code, based on cate-

gory theory, sheaf theory, algebraic specification and general logics. It has been

developed [13] on top of a CCT layer.

In [14], it is shown how Haskell monads can be composed by computing

the coproduct of term representations of their computational effects. This is an

elaborate CCT algorithm based on term algebras, the interleaving of induced

term layers, and quotients of data types. Its approach resembles that of the

witness-based unification-as-coequalizer algorithm of [1].

3 Design and Implementation

We give in the sequel the code snippets from the CL-CAT implementation to

help explain the most important parts of the design.

3.1 Basic Protocol

In mathematical texts, a category is traditionally defined [8, 4] as a structure

comprising (i) a collection of objects, (ii) a collection of arrows, (iii) operations

source and target that each assign an object to an arrow, (iv) operation identity

that assigns an arrow to an object for which both its source and target are that

object, and (v) operation composition that assigns to a pair of arrows (g, f),

such that the target(f) equals source(g), their composite arrow gf , such that

source(gf) = source(f) and target(gf) = target(g). The axioms, which must be

satisfied by all the objects and arrows of the category, are (1) identity/unit law,

that the composition of an arrow with the identity arrow of its source or target

equals the former arrow, (2) associative law, that the order of two compositions

does not matter, i.e., the resulting arrows are equal.

In practice, the “=” used above means identity/sameness, whereas the mean-

ing of “equals” has to be worked out: it may also be the identity, but its context

is often the computation/creation of new entities.

In CL-CAT, categories are defined by methods of four generic functions,

named after the operations defined above:

1 It should be noted that some code in [1] expressly avoids genericity due to overhead,
even though it is considered desirable in general.

A. M. Bakić A DSEL for Computational Category eory

23

(defgeneric source (arrow cat))
(defgeneric target (arrow cat))
(defgeneric id (obj cat))
(defgeneric compo (arrow-g arrow-f cat))

The identity and associative laws are not enforced but assumed. The cat

parameter is introduced in each generic function in order to “free” the other

parameters from fictitious dependence on it; this design decision reduces the

need for copying and supports nicely some CCT algorithms. Whenever unclear

in the sequel, keep in mind that it is a complete and consistent set of methods for

the above protocol that defines a particular category, not only the cat parameter.

Generic object and arrow classes contain slots for read-only contents, cobj

and carr, respectively. The types of these contents are defined for each particular

category; for example, in the FinSet category of finite sets, cobj contains a finite

set and carr a total function between two finite sets.

(defclass obj ()
((cobj :initarg :cobj :reader cobj)))

(defun make-obj (c-des cobj)
(make-instance c-des :cobj cobj))

(defclass arrow ()
((carr :initarg :carr :reader carr)))

(defun make-arrow (c-des so to carr cat &rest keys &key &allow-other-keys)
(add-arrow (apply #’make-instance c-des :carr carr keys) so to cat))

Arrow constructor make-arrow associates each arrow with a given category

object, for bookkeeping purposes.2 This is the cat parameter in the basic func-

tional protocol. An arrow may be associated with more than one category via

function add-arrow. There are :around methods for source and target that

use this bookkeeping information if present.

In some computations, object and/or arrow equality may be needed3 to im-

plement the meaning of the above “equals” relations:

(defgeneric equalc (x y cat))

which has the following predefined methods and can further be specialized for a

particular category as intensional or extensional. On composite arrows sharing

the source and the target, equalc coincides with path commutativity.

(defmethod equalc :around ((x obj) (y obj) (c cat))
(or (eq x y) (eq (cobj x) (cobj y)) (call-next-method)))

(defmethod equalc :around ((f arrow) (g arrow) (c cat))
(and (equalc (source f c) (source g c) c)

(equalc (target f c) (target g c) c)
(or (eq f g) (eq (carr f) (carr g)) (call-next-method))))

(defmethod equalc (x y c) nil)

It is also useful to abstract out the arrow application:

2 It could be optimized wrt. c-des but for the moment, we aim at flexibility.
3 It has to be defined and decidable, which may be a problem for objects. Equality

should not be confused with isomorphism.

A. M. Bakić A DSEL for Computational Category eory

24

(defgeneric arrow-app (a e c))
(defgeneric arrow-range (a c))
(defgeneric arrow-map (a c))

The first generic function computes the point of the target of a that corre-

sponds to e in c, the second computes the set of such points for the whole source

of a, and the third returns the set of pairs of such points.

Finally, we add duality, in the arrow-reversing sense, to the basic protocol:

(defgeneric dual (x))

which assumes that all necessary information is reachable through the single

parameter x. There is an :around method for dual that memoizes the relation

between dual entities. The first primary method of dual is for categories. Their

class contains bookkeeping slots, some of which will be explained in the following

examples. Macro with-dual-restart invokes call-next-method and if it fails,4

it evaluates its body instead, to obtain the result via duality. The elided parts

below represent the definition of the remaining methods and slots of c and d.

(defclass cat ()
((obj-type :initarg :obj-type :reader obj-type)
(arrow-type :initarg :arrow-type :reader arrow-type)
(objs :initarg :objs :accessor objs)
(arrs :initarg :arrs :accessor arrs)
(arht :accessor arht :initform (make-hash-table :test #’eq))
(dual-type :initarg :dual-type :accessor dual-type)))

(defun make-cat (c-des obj-type arrow-type &key
(objs nil supplied-objs-p)
(arrs nil supplied-arrs-p)
(dual-type nil supplied-dual-type-p))

(let ((c (make-instance c-des :obj-type obj-type :arrow-type arrow-type)))
(when supplied-objs-p (setf (objs c) objs))
(when supplied-arrs-p (setf (arrs c) arrs))
(when supplied-dual-type-p (setf (dual-type c) dual-type))
c))

(defmethod dual ((c cat))
(let ((d (make-cat (dual-type c) (obj-type c) (arrow-type c))))

(defmethod source :around ((a arrow) (cat (eql d)))
(with-dual-restart (target a c)))

(defmethod source :around ((a arrow) (cat (eql c)))
(with-dual-restart (target a d)))

...
(defmethod compo ((g arrow) (f arrow) (cat (eql d)))
(compo f g c))

...
d))

It is important to note that, for example, while it is possible to compose two

arrows in a category dual to that in which they are created, it is an error to

call arrow-range on the resulting arrow having the dual category object as an

argument. This is because the arrow is flipped but the carr cannot be dualized.

4 This is done using default primary methods that signal a condition handled by the
macro.

A. M. Bakić A DSEL for Computational Category eory

25

3.2 Basic Computations

An entity X , such as an object or an arrow with some structure, computed in

CCT may have the universal property, or universality, meaning that for every

other relevant entity, a proof can be constructed that X is distinguished (relative

to all these entities). This is implemented via a mixin class universality and

a generic function construct.

(defclass universality ()
((univ :initarg :univ :accessor univ)))

(defgeneric construct (u &rest args))
(defmethod construct ((u universality) &rest args)
(apply (univ u) args))

A simple example is the initial object:

(defclass initial-obj (obj universality) ())

for which a method of generic function compute-initial-obj binds the slot

univ of an initial-obj X to a function such that (construct X O) creates

a unique arrow from X to O. Thus for all objects O in the same category as X ,

even for another initial object, this arrow is a proof that X is initial.

To describe a more interesting example, the colimit, we need to introduce the

functor first. A functor maps each object in category C1 to an object in category

C2, and each arrow in C1 to an arrow in C2, such that these maps commute

with all related arrows in C1 and C2. The functors can be thought of as arrows

in the category of small categories Cat, represented by instance *cat-cat* of

class cat-cat. An as example of the change of perspective, frequent in category

theory, the source and target of a functor are instances of a cat-obj subclass,

whose cobj contains an instance of a cat subclass.

(defclass cat-obj (obj) ())
(defclass functor (arrow) ())
(defclass cat-cat (cat) ())
(defparameter *cat-cat* (make-cat ’cat-cat ’cat-obj ’functor))

The carr of a functor is thus implemented as a cons of two functions: one

for objects and the other for arrows; it is up to the designer to ensure that all

the commutativity requirements are satisfied. We introduce functor-app and

its basic methods.

(defgeneric functor-app (f o/a))
(defmethod functor-app ((f functor) (o obj))
(funcall (car (carr f)) o))

(defmethod functor-app ((f functor) (a arrow))
(funcall (cdr (carr f)) a))

(defmethod compo ((g functor) (f functor) (c cat-cat))
(make-arrow
’functor (source f c) (target g c)
(cons (lambda (o) (functor-app g (functor-app f o)))

(lambda (a) (functor-app g (functor-app f a))))
c))

A. M. Bakić A DSEL for Computational Category eory

26

A diagram is defined as a functor from an index category which, composed

with another functor, gives another diagram. It is implemented as a subclass of

functor, diagram, and has a compo method similar to that for functors. The

index category, implemented using class abs-cat, can be thought of as a graph,

with nodes as labeled objects and edges as labeled arrows, kept in the objs and

arrs slots, respectively. Algorithms which work directly with index categories,

such as colimit object and free algebra computations, traverse these collections.

Next, we need to introduce the cocone, an object with additional structure,

analogous to the upper bound: a family of arrows having it as their target in C

and commuting with all related arrows in C. The mental picture of these arrows

and related objects is an index category with a diagram mapping it to the cocone

object “over” C. This already complex situation could be further generalized,

but by optimization, we only implement the picture as a diagram stored in slot

base of an obj subclass. Slot sides contains a function that maps the source of

an arrow in the index category to the corresponding arrow in C. The inherited

slot cobj has the same type as that of any other object in C. The carr of a

cocone-arrow, however, is an arrow in C.

(defclass conic-obj (obj)
((base :initarg :base :reader base)
(sides :initarg :sides :reader sides)))

(defclass conic-arrow (arrow) ())
(defun side (c n) (funcall (sides c) n))
(defclass cocone (conic-obj) ())
(defun make-cocone (coapex base sides)
(make-instance

’cocone :cobj (cobj coapex) :base base :sides sides))
(defclass cocone-arrow (conic-arrow) ())

The colimit object is a generalization of entities such as the initial object in

a cocomplete category C.5 Analogous to a least upper bound, it is computed as

a “universal completion” over cocone objects, and its class is colimit-cocone.6

(defclass colimit-cocone (cocone universality) ())
(defun make-colimit-cocone (cocone univ)
(make-instance

’colimit-cocone :cobj (cobj cocone) :base (base cocone)
:sides (sides cocone) :univ univ))

The functor-app methods specialized on the conic-obj and conicarrow,

together with methods on compo and dual, implement (co)limit-preserving (co)-

continuous functors, inheriting the basic behavior via call-next-method.

For computing universal completions, two layers of functional protocols are:

(defgeneric compute-colimit (d c))
(defgeneric compute-limit (d c))

5 A cocomplete category is one that has colimits on all diagrams. In CCT, this means
that they can be computed.

6 Notice that univ parameter of make-colimit-cocone pertains to cocone parameter,
whereas we create a new object to avoid side-effects. Even though equalc returns
true on the two objects, this is a potential issue.

A. M. Bakić A DSEL for Computational Category eory

27

(defgeneric compute-initial-obj (o c))
(defgeneric compute-coproduct (lo ro c))
(defgeneric compute-coequalizer (f g c))
...

When the lower-layer methods can be implemented by reusing existing code,

going in the other direction is allowed. For example, the default method of

compute-coproduct below uses compute-colimit. The most general method

of compute-colimit is shown first, using compute-colimit*, which in turn

uses the lower protocol layer for base cases of a structural recursion. The class

names contain io when a compute-initial-obj method is defined, cp when

compute-coproduct is defined, etc. By theorems, an io-cp-ce category inherits

from mixin class cocomplete-cat, and a to-pr-eq category from complete-cat.

(defmethod compute-colimit ((d diagram) (cat io-cp-ce-cat))
(compute-colimit* d cat d))

Function cp-diagram creates a diagram from an index category containing

two objects7 and no arrows, to c. The p-arrow and q-arrow are names used

for injections and projections. Instead of defun, def-memoized-fun memoizes

compute-cp-via-colimit in order to allow for subdividing client code which

depends on the identity: when using the equalc is not desired or possible.8

(defclass coproduct (obj universality)
((p-arrow :initarg :p-arrow :reader p-arrow)
(q-arrow :initarg :q-arrow :reader q-arrow)))

(defmethod compute-coproduct ((lo obj) (ro obj) (c cocomplete-cat))
(compute-cp-via-colimit lo ro c))

(def-memoized-fun +memo+ compute-cp-via-colimit (a b c)
(let* ((d (cp-diagram a b c))

(cc (compute-colimit d c)))
(make-instance
’coproduct :cobj (cobj cc)
:p-arrow (side cc *cp-lo*)
:q-arrow (side cc *cp-ro*)
:univ (lambda (o a1 a2)

(let ((c1 (make-cocone
o d
(lambda (x)

(ecase (cobj x) (cp-lo a1) (cp-ro a2))))))
(carr (construct cc c1)))))))

Using the dual method for functors, pr-diagram creates a product diagram:

(defun pr-diagram (a b c) (dual (cp-diagram a b (dual c))))

The category of finite sets, FinSet, is bicomplete9 and in CL-CAT is named

fin-set-cat. Using the naming convention above, its class hierarchy is:

7 Since the same index category can be used as the source of all coproduct diagrams,
by optimization we use its fixed objects, *cp-lo* and *cp-ro*, to construct a co-
product object. For diagrams induced by a set of objects and a set of arrows, function
make-diagram is provided.

8 The +memo+ is an instance of key situation, using equal for the argument list, from
the generic hash-table implementation (see code referred to in [9]).

9 Both cocomplete and complete, i.e., has all colimits and all limits.

A. M. Bakić A DSEL for Computational Category eory

28

(defclass fin-set-cat (cat) ())
(defclass io-cp-ce-fin-set-cat (fin-set-cat io-cp-ce-cat) ())
(defclass to-pr-eq-fin-set-cat (fin-set-cat to-pr-eq-cat) ())
(defclass bicomplete-cat (cocomplete-cat complete-cat) ())
(defclass io-cp-ce-to-pr-eq-fin-set-cat

(io-cp-ce-fin-set-cat to-pr-eq-fin-set-cat bicomplete-cat) ())

Using the method compute-colimit on any other io-cp-ce category, and

method dual on a to-pr-eq category, method compute-limit can be defined

to reuse the code for computing a colimit object.

(defmethod dual ((c to-pr-eq-cat))
(let ((dc (call-next-method)))

(defmethod compute-initial-obj ((o obj) (cat (eql dc)))
(if *limit-via-dual-colimit*

(compute-terminal-obj o (dual dc))
(call-next-method)))

...
dc))

(defmethod compute-limit ((d diagram) (c to-pr-eq-cat))
(let ((*limit-via-dual-colimit* t))

(dual (compute-colimit (dual d) (dual c)))))

The variable *limit-via-dual-colimit* controls the context, in the sense

of [10]: the colimit computation is used, but in a context where only limit objects

are to be constructed. Methods compute-pushout and compute-pullback are

also defined on cocomplete and complete categories, respectively.

4 Examples

We present in this section three examples, which include computations of grad-

ually increasing complexity.

4.1 Product and Coproduct

For a complete category represented by an instance of class to-pr-eq-fin-set-cat,

the product of two objects below:

(defparameter *fsc-ccat*
(make-cat ’to-pr-eq-fin-set-cat ’fin-set-obj ’fin-set-arrow))

(defparameter *fsc-a* (make-obj ’fin-set-obj ’(a b)))
(defparameter *fsc-b* (make-obj ’fin-set-obj ’(c d)))

with 2-tuples as conses and sets as lists, pretty-printed looks like:

CAT-USER> (compute-product *fsc-a* *fsc-b* *fsc-ccat*)
#<PRODUCT ((A . C) (A . D) (B . C) (B . D))>
CAT-USER> (arrow-app (p-arrow *) ’(A . C) *fsc-ccat*)
A

This is useful for debugging,10 even though the above presentation of the

cobj value does not always match the intuition, which is the canonical Cartesian

product. This is because the product object is unique up to isomorphism.

10 Optionally, for debugging purposes, print-object methods can also print unique
object identifiers for direct access to CLOS objects that have been printed out.

A. M. Bakić A DSEL for Computational Category eory

29

Similarly, given an instance of class io-cp-ce-fin-set-cat:

(defparameter *fsc-c2cat*
(make-cat ’io-cp-ce-fin-set-cat ’fin-set-obj ’fin-set-arrow))

the coproduct of the two objects above looks like:

CAT-USER> (compute-coproduct *fsc-a* *fsc-b* *fsc-c2cat*)
#<COPRODUCT (^A ^B ~C ~D)>
CAT-USER> (arrow-range (q-arrow *) *fsc-c2cat*)
(~C ~D)

where the caret and tilde represents the “left” and the “right” tag of the disjoint

union, respectively, consed up with the points but handled by the pretty-printer.

4.2 Relation Composition (Equijoin)

The exposition in [1] is recast in CL-CAT using a mixin rel-cat category class,

added to the complete FinSet category implementation, which partially de-

fines a category whose arrows of class rel-arrow contain span (multirelation,

finite set) objects as carr. The composition of two rel-arrows contains a new

span that is computed using the pullback (also called fibered product) over

the spans of the two rel-arrows; the base case is a pullback of two unique

fin-set-arrows to the terminal object (denoted by 1), which degenerates to a

product. In Figure 1, the circular nodes are regular fin-set-obj objects, the

regular arrows are fin-set-arrows, the rectangular nodes are span objects of

the thick rel-arrows; the dotted gray arrows and the universalities are disposed

of upon composition.

rel(A,C)

rel(A,B) rel(B,C)

A B C

1

Figure 1: Relation composition using pullbacks, as rel-arrow composition
(defclass rel-cat (cat) ())
(defclass rel-arrow (arrow) ())
(defclass span (fin-set-obj)
((p-arrow :initarg :p-arrow :reader p-arrow)
(q-arrow :initarg :q-arrow :reader q-arrow)))

(defmethod compo ((g rel-arrow) (f rel-arrow) (c rel-cat))
(let ((pb (compute-pullback

(q-arrow (carr f)) (p-arrow (carr g)) c)))
(make-arrow
’rel-arrow (source f c) (target g c)
(make-instance

A. M. Bakić A DSEL for Computational Category eory

30

’span :cobj (cobj pb)
:p-arrow (compo (p-arrow (carr f)) (p-arrow pb) c)
:q-arrow (compo (q-arrow (carr g)) (q-arrow pb) c))
c)))

(defun rel-tuples (rel-arrow rel-cat)
(let ((sp (carr rel-arrow)))

(remove-duplicates
(mapcar (lambda (e)

(cons (arrow-app (p-arrow sp) e rel-cat)
(arrow-app (q-arrow sp) e rel-cat)))

(cobj sp))
:test ’equal)))

The computation of the join of two relations over three fin-set-obj objects

is then the composition of rel-arrows. Below, pairs are conses and sets are lists.

(defclass fsc-cat (rel-cat to-pr-eq-fin-set-cat) ())
(defclass fsc-obj (fin-set-obj) ())
(defclass fsc-arrow (rel-arrow) ())
(defclass fscd-cat (rel-cat io-cp-ce-fin-set-cat) ())
(defparameter *fsc*
(make-cat ’fsc-cat ’fsc-obj ’fsc-arrow :dual-type ’fscd-cat))

(defparameter *fsc-a* (make-obj ’fsc-obj ’(1 2)))
(defparameter *fsc-b* (make-obj ’fsc-obj ’(3 4 5)))
(defparameter *fsc-c* (make-obj ’fsc-obj ’(6 7)))
(defparameter *fsc-r*
(let ((o (make-obj ’fsc-obj ’((1 . 3) (2 . 3) (2 . 4)))))

(make-arrow
’rel-arrow *fsc-a* *fsc-b*
(make-instance
’span :cobj (cobj o)
:p-arrow (make-arrow ’fin-set-arrow o *fsc-a* #’car *fsc*)
:q-arrow (make-arrow ’fin-set-arrow o *fsc-b* #’cdr *fsc*))
fsc)))

(defparameter *fsc-s*
(let ((o (make-obj ’fsc-obj ’((3 . 6) (4 . 6) (4 . 7) (5 . 6)))))

(make-arrow
’rel-arrow *fsc-b* *fsc-c*
(make-instance
’span :cobj (cobj o)
:p-arrow (make-arrow ’fin-set-arrow o *fsc-b* #’car *fsc*)
:q-arrow (make-arrow ’fin-set-arrow o *fsc-c* #’cdr *fsc*))
fsc)))

The class of the category dual to *fsc*, fscd-cat, is explicitly defined in

order to reuse its compute-colimit for the pullbacks. The composition is then:

CAT-USER> (compo *fsc-s* *fsc-r* *fsc*)
#<REL-ARROW #<SPAN ((3 (1 . 3) (3 . 6) . T) (3 (2 . 3) (3 . 6) . T)

(4 (2 . 4) (4 . 6) . T) (4 (2 . 4) (4 . 7) . T))>>
CAT-USER> (rel-tuples * *fsc*)
((1 . 6) (2 . 6) (2 . 7))

The T comes from products with the terminal object, which is a singleton set

{T}, because the generic limit computation is used that creates a non-canonical

cobj value. It is “removed” by the p-arrow and the q-arrow of the span object,

and function rel-tuples obtains the set of 2-tuples from it.11

11 Conses and simple Lisp objects are used for fin-set elements, the built-in equal for
element equality, and a function set-equal for finite set equality.

A. M. Bakić A DSEL for Computational Category eory

31

It is further possible to compute the intersection rel-arrow over a pair of

parallel rel-arrows by computing the limit on a diagram induced by the related

fin-set arrows in *fsc*, using the function make-diagram. Then similarly, the

union rel-arrow using the universality of the pushout12 of fin-set arrows from

the limit to the pair’s carrs. Notice how the compo multimethod facilitates the

implementation of these algorithms, which deal with two categories at the same

time, using a single CLOS object, *fsc*.

4.3 Three-Valued Logic Topos

We have seen the fin-set category, with a minimum of structure. The category

of graphs has more structure in the form of imposed constraints such as that an

edge has a source and a target. It can be implemented using a parameterized

comma category, an instance of class comma-cat. The parameters are two func-

tors, L and R, that share the target category, and objects in a comma category

(L, R) are 3-tuples of objects of the two source categories and a corresponding

arrow in the target category; see Figure 2 (left). In the case of finite graphs, the

source categories are the same instance of fin-set: objects are edge and node

sets, respectively; and arrows are functions from the edge sets to (source, target)

node-pair sets, both associated with the fin-set target category.

A little simpler use of the comma category can help implement the three-

valued logic on a topos. First, we describe the implementation of a topos, which

is a bicomplete category with an exponential and a subobject classifier. We do

not use an exponential object in the example, so a bicomplete category with

a subobject classifier suffices. The subobject classifier Ω, an object with: the

logical values, a constant t-arrow from the terminal object selecting T, and a

universality, is defined below.

(defclass subobj-classifier (obj universality)
((t-arrow :initarg :t-arrow :reader t-arrow)))

(defgeneric truth-carr (cat))
(defgeneric compute-truth-arrow (to omega to-cat))
(defgeneric chi-carr (m cat))
(defgeneric compute-chi-arrow (m omega to-cat))
(def-memoized-fun +memo+ compute-subobj-classifier (to omega to-cat)
(make-instance
’subobj-classifier :cobj (cobj omega)
:t-arrow (compute-truth-arrow to omega to-cat)
:univ (lambda (m) (compute-chi-arrow m omega to-cat))))

The chi stands for the characteristic arrow, which maps/classifies a point of

the target of a monic arrow m to a point in Ω iff it satisfies a criterion of being in

the corresponding subobject of the target. It is just a mnemonic for construct.

12 For this, the complete category represented by fsc-cat must be extended to a bicom-
plete category. Note that limits, even in a bicomplete category, must be computed
via colimits in their dual category, in order to reuse code.

A. M. Bakić A DSEL for Computational Category eory

32

In the familiar case of fin-set, the monic m may be a set inclusion (its

source is a subset of its target, so it determines a subobject of the target), and

each element in the range of m is mapped by the characteristic arrow to T in Ω.

The following function creates an arrow from the source of m, o, to Ω (sc) such

that it maps each element of o to T and, at the same time, commutes with the

composition of m with its characteristic arrow in c.13

(defun true (o sc c)
(let ((to (compute-terminal-obj *dummy-obj* c)))

(compo (t-arrow sc) (construct to o) c)))

Methods on the generic compute-*-arrow functions above are defined for

fin-set and comma-cat. Methods for the other two are defined on demand.

For the internal logic, we need the terminal object and Ω. Constants are

arrows from the terminal object to Ω, unary connectives from Ω to Ω, and binary

connectives from Ω × Ω to Ω. For example, as explained in [15], ∨ (top-or) is

defined, given a subobject classifier sc and a category c, using both colimit and

limit computations in c. The epi-mono-factorize returns a (mono . epi).

(def-memoized-fun +memo+ top-or (sc c)
(let* ((cp (compute-coproduct sc sc c))

(pr (compute-product sc sc c))
(st (true sc sc c))
(si (id sc c))
(p1 (construct pr sc si st))
(p2 (construct pr sc st si))
(m (construct cp pr p1 p2)))

(chi sc (car (epi-mono-factorize m c)))))

Finally, we give the example, then explain further details.

(defclass fs-obj (fin-set-obj) ())
(defclass fs-arrow (fin-set-arrow) ())
(defclass fs-cat (io-cp-ce-to-pr-eq-fin-set-cat)
() (:default-initargs :dual-type ’fsd-cat))

(defclass fsd-cat (io-cp-ce-to-pr-eq-fin-set-cat)
() (:default-initargs :dual-type ’fs-cat))

(defparameter *fsc* (make-cat ’fs-cat ’fs-obj ’fs-arrow))
(defparameter *l* (make-cocontinuous-functor-via-identity *fsc*))
(defparameter *r* (make-continuous-functor-via-identity *fsc*))
(defclass top-cat (bicomplete-comma-cat)
() (:default-initargs :dual-type ’topd-cat))

(defclass topd-cat (bicomplete-comma-cat)
() (:default-initargs :dual-type ’top-cat))

(defparameter *fcc* (make-comma-cat ’top-cat *l* *r*))
(defparameter *src* (make-obj ’fs-obj ’(f * t)))
(defparameter *tgt* (make-obj ’fs-obj ’(f t)))
(defparameter *to* (compute-terminal-obj *dummy-obj* *fcc*))
(defparameter *omega*
(make-comma-obj
src
(make-arrow
’fs-arrow (functor-app *l* *src*) (functor-app *r* *tgt*)
(lambda (e) (ecase e (f ’f) (* t) (t t))) *fsc*)
tgt))

(defparameter *sc* (compute-subobj-classifier *to* *omega* *fcc*))

13 The *dummy-obj* is used and ignored when we want the terminal object to be unique.

A. M. Bakić A DSEL for Computational Category eory

33

The *l* and *r* are identity functors that preserve colimits and limits,

respectively. This is needed by the compute-colimit method on *fcc*, which

is computed via compute-colimit on the source categories. The compute-limit

method on *fcc* uses duality, two more comma categories and an isomorphism.

(defmethod compute-limit ((d diagram) (c complete-comma-cat))
(let* ((idc (iso-dual-comma-cat c))

(i (make-dual-comma-isomorphism c))
(*limit-via-dual-colimit* t))

(limit-via-iso-duality d i idc)))

The function limit-via-iso-duality implements a generic construction: it

first computes the colimit in idc, then creates a cocontinuous functor from i,14

uses the two to construct the colimit in the dual of c, and finally applies to its

copy—which has the sides and the arrow created by the universality associated

with c using add-arrow—the dual method for colimit cocones. The variable

limit-via-dual-colimit is bound to T in order to construct the resulting

limit object using limit objects in the (dual of *fsc*) fin-set category while

reusing the colimit computation.

A B

A’ B’

C D

C’ D’

L

hs

L R

R

ht

f

L R
g

A B

C D

Id

hs

f

Id

ht

g

Id Id

Figure 2: Two comma objects and a comma arrow (hs, ht) between them: (left)

in general, and (right) for the topos. The rectangles in the middle must commute.

The objects of *fcc* are 3-tuples that boil down to just fin-set arrows, as

shown in Figure 2. The additional structure of this comma category can be seen

in its arrows: they are commuting squares which, when Ω is the source and/or

target, factor through *omega*’s fin-set arrow. Therefore, all the constants

and the connectives of the topos must be consistent with this function from the

3-valued to the 2-valued set.

Two other parameters of the topos are truth-carr and chi-carr below.

The 3-value part of the chi-carr returns * for those elements that are in a

subset according to the 2-valued logic but not according to the 3-valued logic.

The constituent fin-set categories of a comma category are kept in a list stored

in its obj-type, and the two functors in its arrow-type.

14 For c being (L, R), idc is (dual(R), dual(L)) and i is an isomorphism between idc
and the dual of c.

A. M. Bakić A DSEL for Computational Category eory

34

(defmethod truth-carr ((c top-cat))
(cons (constant-fn t) (constant-fn t)))

(defun inv-range (a cda cdb c)
(let ((s (cobj (source a c))))

(set-difference
(loop for x in s

when (member (arrow-app a x c) cdb :test ’equal)
collect x)

cda
:test ’equal)))

(defmethod chi-carr ((m arrow) (c top-cat))
(let* ((cats (obj-type c))

(ac (car cats))
(bc (cadr cats))
(cc (caddr cats))
(mc (carr m))
(mt (target m c))
(cda (arrow-range (car mc) ac))
(cdb (arrow-range (cdr mc) bc))
(cdc (inv-range (cadr (cobj mt)) cda cdb cc)))

(cons
(lambda (z)

(if (member z cda :test ’equal)
t
(if (member z cdc :test ’equal) ’* ’f)))

(lambda (z) (if (member z cdb :test ’equal) t ’f)))))

Finally, we can compute the 3-valued and 2-valued “truth tables”15 for the

above arrow top-or. The method arrow-map on a comma-arrow returns a cons

of the same generic function applied on its constituent arrows.

CAT-USER> (arrow-map (top-or *sc* *fcc*) *fcc*)
((((F F . T) . F) ((F * . T) . *) ((F T . T) . T) ((* F . T) . *)
((* * . T) . *) ((* T . T) . T) ((T F . T) . T) ((T * . T) . T)
((T T . T) . T))
((F F . T) . F) ((F T . T) . T) ((T F . T) . T) ((T T . T) . T))

5 Conclusion

The work on CL-CAT has been a hobby project with the goal to deepen the

understanding of category theory and CCT by coding them in the familiar lan-

guage. There have been numerous iterations involving extension and refactoriza-

tion. Whereas the basic CCT is supported at least as much as in [1],16 without

the need for auxiliary data structures such as graphs, many open questions re-

main in general. The contribution of CL-CAT is mainly a reduced set of CLOS

protocols and other constructs that facilitate the experimentation with category-

theoretic concepts and CCT algorithms.

Although the concrete syntax is considered important for a DSEL, we have

abode by Lisp style guidelines, e.g., not used a macro when a function would

15 Something similar to the function rel-tuples is needed for beautification.
16 This includes functor and product categories, adjunctions, term algebra, with the

connected components, transitive closure and unification algorithms.

A. M. Bakić A DSEL for Computational Category eory

35

suffice. This helps a DSEL to be better embedded in the host language and

benefit from existing tools, e.g. for code coverage.

One of the most difficult parts has been the arrow flipping, such as in

limit-via-iso-duality, related to the approach to duality, which is a novelty

of CL-CAT. Further refinement is needed to ensure that duality is propagated

in compound objects, even if unused. Equality on objects and points needs more

work, perhaps by extending equalc and integrating it with the generalized hash-

tables. Similarly for the mapping of points, which generalize to diagrams (maps

from “map-separating objects” [8]). For the functional CLOS protocols used,

only the primary/:around/call-next-method portion of the standard method

combination seem appropriate for the functional nature of CCT.

Acknowledgments. The author is grateful to the anonymous reviewers for

their help in improving this work.

References

1. D.E. Rydeheard and R.M. Burstall, Computational Category Theory. Prentice Hall
International (UK) Ltd., http://www.cs.manchester.ac.uk/~david/categories/
book/book.pdf, 1988.

2. Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow, CLOS: Integrating Object-
Oriented and Functional Programming, Communications of the ACM, v.34, n.9,
1991.

3. Greg O’Keefe, Towards a Readable Formalisation of Category Theory, Proceedings
of Computing: The Australasian Theory Symposium (CATS), 2004 .

4. Benjamin C. Pierce, Basic Category Theory for Computer Scientists. The MIT
Press, 1991.

5. Paul Hudak, Building domain-specific embedded languages, ACM Computing Sur-
veys (CSUR), v.28, n.4es, 1996.

6. Paul Graham, On Lisp - Advanced Techniques for Common Lisp. Prentice Hall,
1994.

7. Sonya E. Keene, Object-Oriented Programming in Common Lisp - A Programmer’s
Guide to CLOS. Addison-Wesley, 1989.

8. F. William Lawvere and Stephen H. Schanuel, Conceptual Mathematics. Cambridge
University Press, 1997.

9. Christophe Rhodes, Robert Strandh, and Brian Mastenbrook, Syntax Analysis in
the Climacs Text Editor, International Lisp Conference, 2005.

10. Pascal Costanza and Robert Hirschfeld, Language Constructs for Context-oriented
Programming - An Overview of ContextL, Dynamic Languages Symposium, OOP-
SLA’05, 2005.

11. Thomas Noll, The Topos of Triads, Colloquium on Mathematical Music Theory,
2005.

12. Gerhard Mack, Universal Dynamics, a Unified Theory of Complex Systems. Emer-
gence, Life and Death, Commun.Math.Phys., v.219, 2001.

13. Yellamraju V. Srinivas and James L. McDonald, The Architecture of Specware, a
Formal Software Development System, Kestrel Institute, Palo Alto, 1996.

14. Christoph Lüth, Neil Ghani, Composing monads using coproducts, ACM SIG-
PLAN Notices, v.37, n.9, 2002.

15. Robert Goldblatt, Topoi: The Categorial Analysis of Logic, Studies in Logic, v.98,
North-Holland Publishing Co., Amsterdam, 1979.

A. M. Bakić A DSEL for Computational Category eory

36

e Outside World

Marrying Common Lisp to Java, and Their Offspring

Jerry Boetje
(College of Charleston, Charleston, SC, USA

boetjeg@cofc.edu)

Steven Melcher
(College of Charleston, Charleston, SC, USA

ssmelche@edisto.cofc.edu)

Abstract: The CLforJava project has devised a number of techniques and patterns to allow
seamless access between Java and Common Lisp. These patterns range from meshing type
systems to creating defstruct architectures to a new view of pathnames. We examine many
of these techniques and patterns from the simple to the more complex.

Key Words: Java, Common Lisp, JVM, Intertwining, Architecture

Category: D.2.3 Coding Tools and Techniques

1. Introduction

The open-source CLforJava project is an on-going work to create a new implementa-
tion of the Common Lisp specification. The two unique goals of this project are sup-
port the education of computer science students and to create a product that inter-
twines Java and Common Lisp in such a way that users of Java or Lisp view each
other as just a library in their language. The first goal continues to be met every year.
One half of the latter goal has been attained in that a Java programmer can view Lisp
as a Java library. On-going work will extend CLOS in such a way that Java libraries
appear as CLOS classes and generic functions.

Prior papers have discussed the educational aspect of the project or some of the goals,
processes, or a few basic features. This paper details a number of the techniques we
have devised to meet these goals.

2.The Obvious

2.1.Meshing the Type Systems

The key to intertwining the two languages is to define one type system in terms of the
other’s type system. Since CLforJava runs on the JVM, it was logical to define Com-
mon Lisp in the Java type system. This diagram depicts the CL type structure includ-

38

ing those defined in the “The Art of the Metaobject Protocol” (AMOP) as well as
types used to mesh the I/O types systems (see the upper left section).

Each of these types is implemented as a Java interface, using Java inheritance to cre-
ate the type map. Note that the map is not a tree, rather a DAG as specified by Com-
mon Lisp. In addition to the Java-based type structure, the interfaces provide several
crucial architectural features.

1. They create a bridge between the Java type system and the Common Lisp
type system. Each interface contains a reference to the symbol naming the
Lisp type. Conversely, the symbol carries a reference to the Java interface
defining the type. This example code shows the definition of ATOM and that
ATOM is a subclass of both BUILT-IN-CLASS and T.
 package lisp.common.type;
 /** Defines an interface for Atom lisp type. */

 public interface Atom extends BuiltInClass, T {

 public static final Symbol typeName =

 Package.CommonLisp.intern("ATOM")[0];

2. The second feature of this architecture is that any interface that names an
instantiable Lisp type carries a static Factory class with one or more static
newInstance methods. For example, to create a Lisp Character given a
codePoint, use the following:
 lisp.common.type.Character.Factory.newInstance(42);

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

39

3. By defining Lisp types as Java interfaces, any Java program can determine if
an object belongs to the Lisp family by using this code fragment:
 (theObject instanceof lisp.common.type.T)

2.2.Java Access to Lisp Functions

All Lisp functions are defined by a Java class implementing the Function interface.
This is good for Lisp, but how does a Java programmer access a Lisp function? The
first step is to define the Java class name of the function by using a declaration -
extensions:java-class-name - and a string argument that specifies the fully-
qualified Java class. For example, to name the CAR function, add

(declare (ext:java-class-name “lisp.common.function.Car”)).

There is an additional option when defining a Java-accessible function. If the Lisp
function has a non-anonymous name, the implementing class is created with a private
constructor preventing instantiation of the class. The compiler however adds a static
final field named “FUNCTION”and arranges to create a single instance of the class,
assigning the instance to that field. From here, any Java code can access that Lisp
function via the class and the static field. On the other hand, functions that are not
(Lisp) named - effectively anonymous functions - can be treated by Java programmer
as any class that can be instantiated. Note that instances of these anonymous functions
automatically close over any free variables.

Here is an example of combining the type CAR and function CAR:
 lisp.common.type.Cons theCons =

 lisp.common.type.Cons.Factory.newInstance(1, 2);

 theCons.setCar(3);

 lisp.common.function.Car.FUNCTION.funcall(theCons) => 3

Since functions are defined and implemented as classes, closure implementation is
straight-forward. A simple, skeleton example illustrates the closure architecture.
Every instance of anon_54 will access the current location of y in the instance of
anon_27. Other instances of anon_27 will define different locations for y.

(lambda (x)
 (let ((y x))
 (lambda (z)
 (+ y z))))

class anon_27 {
 funcall(Object x) {...
 private Object y; ..
 y = x;
 return new class anon_54 {
 funcall(Object z) {
 return (z + y); }
 }}}

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

40

2.3.Binding Special Variables

CLforJava does not have a single variable binding stack. Each symbol carries its own
stack of values as needed. To keep everything sane, the compiler, when it generates
binding code, wraps the binding operation in a try/finally block. There is exactly
one try/finally block for each special variable, preventing unbinding variables that
had not yet been bound in this let.

(let ((*a* 1)
 (*b* 2))
 ...
)

try {
 a.bind(1);
 try {
 b.bind(2);
 ...
 } finally {
 b.unbind();
 }
} finally {
 a.unbind();
}

3.Simple But Interesting

3.1.Hash Tables - Implementation and Extension

In Common Lisp, there are four types of hash tables, each with its own equality test
for the keys: eq, eql, equal, and equalp. However, the Java libraries provide only
two types of hash table. Being the type of programmers who would rather use an ex-
isting solution than building our own, we investigated the Java solutions. What we
found that there was a kernel of a solution, but neither of the Java HashTable nor
HashMap could not be used directly.

Here are some differences between Java hash maps and hash tables:
• HashTable is synchronized, and HashMap is not.

HashMap is better for single threaded applications and can be externally
synchronized

• HashTable does not allow null keys or values.
HashMap allows one null key and any number of null values.

There is one type of hash table common to both Common Lisp and Java. The Java
IdentityHashMap has the same behavior as defined for the Lisp EQ hash table. So
that leaves three Lisp types with only one more Java type to try; and of course its be-
havior is not an exact match for any of them. The behavior of the Java HashMap dif-
fers completely from any one of the Lisp ones in that it requires a two-level test of
equality. As serendipity has it, the solution to the two-level equality not only lead us
to a simple solution for all three of the other hash table types but to a simple mecha-
nism to add new Lisp hash table types nearly trivially.

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

41

In Common Lisp, two objects that are equivalent under eql, equal, or equalp may
have a different hash code. An example is an array that contains the same characters
as a string in Common Lisp. They would both return T when tested with equalp, but
their hash codes may be different. In Java, the hash codes of two keys are compared
and must be equal before the keys are tested for equality using the key’s Java equals
method. This would seem to be an insurmountable barrier rather than the solution for
three similar problems.

Since we could not rely on the key objects to generate the needed hashCode (telling
the equals method which algorithm to use - bad idea), we opted for a localized hal-
lucination process whereby we would proffer an altered key to the Java HashMap that
will have context information. It is a simple wrapper class that both holds the real key
and computes the needed equals and hashCode methods. There are three subclasses
of wrapper to match the three comparisons. It also handles the problem with matching
the hash code. The real key is never altered.

Of course, this opens the possibility of adding new types of hash table in CLforJava.
This would be an interesting task for one of our students to define a clear interface
where the new type could be simply dropped into CLforJava.

3.1.Sorting

Common Lisp provides two sorting functions (simple sort and a stable sort). In
CLforJava, they are handled via the Java Collection sort method. To use the Java
sort, the Lisp LIST and VECTOR types must also implement the
java.util.Collection interface. This has the added flexibility for Java program-
mers who treat the Lisp system as a Java library. However, by using the Java sort,
the CLforJava sort and stable-sort functions are identical.

3.2.Starting It All Up

Being a hybrid language processor, the CLforJava startup process is rather unique.
Java has a strict set of rules for the loading and initializing classes and interfaces. It
also has a penchant for loading classes and initializing classes and interfaces only
when needed. As we have found, this on-demand class loading doesn’t build a work-
able system, forcing us to take on more direct ordering of class and interface loading
and initialization. Here is the basic class loading order:

1. Make an instance of lisp.common.CLforJava - the main class
2. That instance loads (using Class.forName)

1. lisp.common.type.Package - all for the standard packages
2. lisp.common.type.SpecialOperator - all of the special operator

symbols

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

42

3. lisp.common.type.Declaration - the standard declaration sym-
bols

4. lisp.common.type.Variable - all of the defined variables and their
default values

5. lisp.common.type.Constant - all of the defined constants and
their values

3. The next two operations are designed to force the Java class loader to load
and initialize all of the type interfaces and all of the Common Lisp functions
that are implemented in Java. Here are they work:
1. It is critical that the complete type system be loaded at the same time.

Failure to load these interfaces and their nested Factory classes leaves
the system in an unusable state. To insure its correct operation, each
interface that implements a Lisp type carries a static boolean vari-
able (initialize). The value of this variable is assigned by recur-
sively accessing the value of the initialize variable in its parent (or
parents in the case of multiple inheritance). The
lisp.common.type.T interface, of course, starts with a value of T.
At the end of this algorithm, the entire type system is initialized. On the
way, the algorithm also carries a hitchhiker. As it enters a type interface,
it puts the Java name of the interface into the Lisp symbol, thereby con-
necting the two type systems.

2. Now that the type system is complete, there remains the loading of the
core functions - those implemented in Java. It is not sufficient to let Java
dynamically load the functions; many will fail to load in time. Our solu-
tion also provided an optimization of accessing functions. There is a
class, CommonLispFunctions, that has a list of all of the defined
Common Lisp functions. This list is actually a set of public fields
where each field holds an instance of a Common Lisp function class.
The compiler is aware of this list and will create code to directly access
the function by using just a JVM getField instruction. This class is
initialized immediately after the type initialization process finishes.

The remaining initialization operations are straightforward. The remaining functions
are in compiled Lisp and loaded in the proper order. However, we have left one other
interesting aspect of startup to discuss. NIL is not a small component of nil effort. You
see, NIL is critical in the earliest parts of startup - those dealing with the package sys-
tem and the variables and constants. It is vital to be able to create T and NIL with very
little support. To make things worse, NIL is a hybrid: part symbol and part list. And
both symbols T and NIL require as their values themselves.

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

43

3.3.Unicode Implementation and Useful Extensions

A long-held goal of CLforJava is to handle the full Unicode character set and to pro-
vide compatibility with the character and string functions defined in the CL specifica-
tion. We are please to note that we met that goal with the release of Unicode 4.0 in
2005. During this Fall will update our support to the current Unicode 5.2 specifica-
tion. Our implementation uses an unorthodox method of dealing with this large set of
characters. We chose a brute-force design by creating and loading all 15,000, exclud-
ing Korean and Chinese, characters into a hash table on startup. Since all Unicode
characters are unique by their number, we can also add other information useful at
runtime. Characters are keyed by their number, their Unicode name, Common Lisp
name, and other common names such as from the ASCII suite. Other character infor-
mation is available from some extension functions. A common use of this information
is to query for a character’s Unicode group. For example, the Reader uses this infor-
mation when parsing numbers. There are many different sets of the decimal numerals
that constitute integers. Our Reader will parse numerals from the same Unicode group
and return the integer. We have added an extension to this facility. Unicode does de-
fine numerals from non-positional number systems such as Roman or Ancient Ae-
gean. Our current system recognizes Roman numerals (not X,I, etc from ASCII but
characters from the Roman Unicode group) and will read (soon write) integers and
ratios in Roman numerals.

3.4.Numbers and Arithmetic

CLforJava boxes all numbers to define the Lisp type (fixnum, long float, ratio, etc).
All integers are implemented as Java BigIntegers. Most of the numerical functions
defined for Common Lisp are also defined in Java, simplifying the implementation.
The difficulty arises in the implementation of the binary operations where there are
four types of floats, two types of integer, ratios, and complex numbers - leading to a
large number of combinations and a large amount of duplicated code. Our approach
was to use a Strategy pattern coupled with the Java enum facility. The combinations
are pre-computed and stored in a set of EnumMaps. Given any pair of numbers, it
takes no more than 2 accesses (very fast) to the proper method. This method is also
amenable to extension to any new number types.

3.5. Transfer of Control (TOC)

A full discussion of TOC in CLforJava is beyond the scope of this paper. In brief,
there is a set of Exceptions that carry information about type (catch/go/return-from).
A local Java catch is built into all functions. At Lisp exception time, a series of catch-
ers determine the local effects and preform any unwind-protect actions. The following
sequence diagram provides an example of a TOC handling in CLforJava. More de-
tailed information is available at
http://clforjava.org/twiki/bin/view/Compiler/TransferOfControl.

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

44

An interesting side-effect of this design is that catch can also catch Java exceptions
by providing the full class name of a Java exception, e.g. java.lang.Throwable
will catch everything.

4.The Harder Ones

4.1.Filenames and the Network

The Common Lisp pathname specification slightly precedes the ubiquitous presence
of the Internet and as a result makes assumptions that apparently to constrict it to a
straight-forward implementation that deals with files. However, the specification
gives us some leeway in its acknowledge of network-based files by the inclusion of
the HOST component of a pathname. Our pathnames implementation is based on the
Uniform Resource Identifier (URI) and a map of the CL pathname to the URI.

The sharpest turn in the adoption of URIs is that the DEVICE pathname component
not longer specifies a hardware device such as C: but rather specifies a protocol that
can access some network-based entity. Under this interpretation, any pathname used
access to file-based information will have a DEVICE component :file. Applying the
OPEN function to such a pathname acts exactly as the default operation of the Lisp file
system. Under this interpretation, the prior use of C: to specify a hard device is now
integrated into the DIRECTORY as C| at the start of the directory form. The HOST

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

45

component now becomes the network address/port/authentication . The following
table shows 3 possible file pathnames and their components.

Under this interpretation, pathnames become powerful entities in Lisp. The HOST
component carries the instructions needed by the OPEN function to make and manage
a connection to the network entity. Defining a new pathname type involves creating
connection code and specifying the type of operations (READ-LINE, WRITE, ...) sup-
ported. An example built into CLforJava is the use of HTTP. Create a pathname with
the following elements. Note: the use of ‘Scheme’ does not refer to the language. It is
a term used in networking.

For the base case of handling local filenames, there is the URI scheme “file.” As
shown in Table 2, any pathname representing a local file will have the
keyword :file as the value of its device component. The name and type is parsed

in the obvious manner and the version component is always set to :UNSPECIFIC,
following the example of Allegro CL. The directory component is mostly identical
quite similar towith other implementations. However, some file systems have chosen
to separately name a physical device or volume (e.gi.e. drive letters in Microsoft file
systems). It was decided that such information, if present, would be included as part
of the directory list. This seems reasonable since such a device is certainly part of the
hierarchical path uniquely identifying a file. Also, this strategy offers more
consistency between filenames on Windows systems and those on UNIX-like
systems. This is convenient for a multi-platform implementation of Common Lisp
such as CLforJava.

Table 2: File based pathnames in CLforJava

URIs with other schemes are also easily handled. In Example 1 shows, the mapping
of an http-based URI to pathname components is shown. The authority [Section 2.2]
part maps to the host component. Since this URI’s path includes a filename (which is
not always the case), the name and type information was retrieved and stored
accordingly. Also, the query part was stored in the directory list. If there had been a
fragment part, it would have been similarly stored.

Example 1 – (pathname “http://www.cofc.edu:8080/foo/index.htm?query=x”)
Device :http
Host “www.cofc.edu:8080”
Directory (:ABSOLUTE “foo” “?query=x”)
Name “index”
Type “htm”
Version :UNSPECIFIC

A URI doesmay not necessarily specify a scheme such as “http”. Such URIs are
known as relative as opposed to absolute URIs which do specify a scheme (here URI
terminology slightly clashes with that for filenames). An interesting
situationambiguity arises with relative URIs: there is no syntactical way to
distinguish a relative URI from a local filename. In practice this presents little
difficulty since a relative URI is only useful when it is later merged with an absolute
URI. CLforJava handles this ambiguity by returning a pathname with device :file
(which may, as a filename, have an absolute path), as shown in Example 2.

Jerry Boetje

Today, 11:05 PM

Deleted: handling

Jerry Boetje

Today, 11:06 PM

Formatted: Removed Kerning +

Removed Word Underlin…

Jerry Boetje

Today, 11:07 PM

Deleted: mostly identical

Jerry Boetje

Today, 11:07 PM

Added Text

Jerry Boetje

Today, 11:07 PM

Deleted: with

Jerry Boetje

Today, 11:08 PM

Deleted: i.e

Jerry Boetje

Today, 11:08 PM

Added Text

Jerry Boetje

Today, 11:10 PM

Deleted: In

Jerry Boetje

Today, 11:10 PM

Deleted: ,

Jerry Boetje

Today, 11:10 PM

Added Text

Jerry Boetje

Today, 11:10 PM

Deleted: is shown

Jerry Boetje

Today, 11:16 PM

Deleted: does

Jerry Boetje

Today, 11:16 PM

Added Text

Jerry Boetje

Today, 11:16 PM

Deleted: necessarily

Jerry Boetje

Today, 11:17 PM

Formatted: Removed Kerning +

Removed Word Underlin…

Jerry Boetje

Today, 11:17 PM

Formatted: Removed Kerning +

Removed Word Underlin…

Jerry Boetje

Today, 11:17 PM

Deleted: interesting situation

Jerry Boetje

Today, 11:17 PM

Added Text

Device: :http
Host: www.google.com
Directory: NIL

Name: index
Type html
Version :unspecific

Open that pathname for :IO. Output is handled by sending the name/type compo-
nents. Read lines until EOF. You now have the HTML for Google’s first page. The full
scope of a CLforJava pathname is quite large. It is possible to build up very powerful
pathnames. The following diagram shows the varying options for building from files

and HTTP to handling XML-based and other high-level protocols.

Syntactically a URI is identified as opaque if it is absolute (specifies a scheme) and its
scheme-specific-part does not begin with a forward slash (‘/’). Opaque URIs are not
subject to parsing beyond what is stated above.

Non-opaque URIs are calledtermed ‘hierarchical’. With theseany hierarchical URI,s
the scheme-specific-part may be further parsed according to the syntax

[scheme:][//authority][path][?query][#fragment]

and the authority component may be further parsed as

 [user-info@]host[:port].

CLforJava takes advantage of this hierarchy by collapsing a URI’s nine possible
components into only threefive: scheme, scheme-specific-part or authority, and path,
name, and type. The resulting parsing strategy implemented by CLforJava is
summarized in Figure 1 and discussed in detail below.

 Figure 1 – URI component mapping

Either the scheme-specific part of an opaque URI or the authority part of a
hierarchical URI is stored in the pathname’s host component. Doing so preserves and
encapsulates all the access information in an intuitive location. It also seemed logical
to store the path information in the directory component of the pathname. Each
element of the path therefore exists as an element of the directory list. Strictly
speaking, the fragment and query parts of a URI are not subparts of the path. Since
one of our derived requirements for pathnames was that we preserve syntax, it was
unacceptable to add any new components to the pathname type. Therefore, we chose
to treat the fragment and query as part of the path so that they can be easily stored in
the directory list. Due to the syntax of URIs, these items are easily identified within

Jerry Boetje

Today, 11:25 PM

Deleted: called

Jerry Boetje

Today, 11:25 PM

Added Text

Jerry Boetje

Today, 11:25 PM

Added Text

Jerry Boetje

Today, 11:25 PM

Added Text

Jerry Boetje

Today, 11:25 PM

Deleted: these

Jerry Boetje

Today, 11:26 PM

Added Text

Jerry Boetje

Today, 11:26 PM

Deleted: s

Jerry Boetje

Today, 11:26 PM

Added Text

Jerry Boetje

Today, 11:26 PM

Added: Space

Jerry Boetje

Today, 11:28 PM

Deleted: three

Jerry Boetje

Today, 11:28 PM

Added Text

Jerry Boetje

Today, 11:28 PM

Deleted: and

Jerry Boetje

Today, 11:28 PM

Added Text

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

46

4.2.Compilation Without FASL

CLforJava compiles lisp directly to Java byte code. The COMPILE function works
entirely in the current environment. Any such compilations do not persist. The
COMPILE-FILE function accesses a file of lisp code, compiles it to byte code, and
stores it in a file. However, the resulting code is not in a FASL file type. Our system
compiles directly to a JAR file. Our use of the JAR facility has simplified the loading
process, both during startup and later.

Any file compilation produces multiple forms that must be loaded at some later time.
Most of the forms will be compiled lambda forms (named lambda forms, LOAD-
TIME-VALUE forms, and other anonymous lambda forms). There are also a number
of other forms remaining in the file, e.g. (in-package :foo), (defvar bar 42),
etc. There is also lisp code that surrounds one or more lambda forms from macro
expansion. To load these individual forms requires some amount of specialized code,
making the compiler larger and buggier. We decided to try a different approach.

Our approach was to compile only lambda forms. In the case of file compilation (and
most forms typed into the REPL), the complete set of code is wrapped in a lambda
form, e.g. (lambda () ...all-code...). This has the effect of adding one more
lambda - but a special one. The new lambda is named by the name of the file being
compiled. When the compiler encounters another (regular) lambda form, it compiles
that lambda and leaves JVM code in the outer form that will make an instance of that
lambda class and execute that instance at runtime. This process is recursive such that
all lambdas are compiled to classes and instances are created at the proper time.

At the end of compilation, all of the lambdas - including the added one - are written
into a standard JAR file. The compiler now adds information to the manifest. A critical
piece is the MAIN-CLASS entry which holds the name of the special file (usually the
class name is made from the JAR file’s name). The JAR processing also creates an
index of all of the classes that are in the JAR file.

At this point, the JAR file is ready to be loaded. The loader locates the JAR file and
looks for the MAIN-CLASS entry in the manifest. The loader uses a ClassLoader to
load that class - the one that wraps everything in the file. The loader accesses the non-
argument constructor and executes it. Now that the instance is initialized, the loader
calls its funcall method. That executes all of the non-lambda code in order and
auto-loading the rest of the lambdas referenced in the source file.

4.3. PROVIDE/REQUIRE and the Classpath

This facility is in development and may finished by the symposium. As in other facili-
ties, we look for a Java facility that we can bend to our need. Our implementation is
based on the Java class loading process.

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

47

As we noted in the compilation section, the COMPILE-FILE function creates a special
lambda that can be used to locate and execute the startup code for that JAR file. The
current system creates a class name from the name of the file being compiled, e.g.
quux.lisp. Using the PROVIDE function, the programmer can name the startup class
in this file. For example, if the file has the form (provide “QuuxLisp”), that
would be the name of that special lambda. Of course, it can be anything the pro-
grammer wishes provided that the name is valid in Java.

REQUIRE uses the same process that LOAD does except that it relies more on the
CLASS-PATH. If the programmer uses (require “QuuxLisp”), REQUIRE will ask
the current class loader to find that class in its class path. If the programmer gives a
list of locations, the function will create a new class loader and set its class path to the
list of the locations found in REQUIRE and appends the main class path to this new
one. Note that this means that can be found in many places since the locations are
defined by URIs.

Note also that REQUIRE is recursive. There may a cascade of requests. This will al-
low us to dispense with our ad-hoc mechanism currently in use.

4.4. LOAD-TIME-VALUE and QUOTE

The implementation of the LOAD-TIME-VALUE special operator gave us an oppor-
tunity to put our ability to create the JVM byte-code to the test. The specification re-
quires that the value of the form is evaluated in the NULL environment and during
loading into the runtime environment. For CLforJava, that time happens when the
Java class implementing the enclosing form is loaded. On detection of an LTV, the
compiler sets up the actions that will happen during the loading process.

1. Creates a unique name and replaces the LTV form with a marker carrying
the name.

2. Wraps the LTV form in a no-argument lambda
3. Compiles the lambda form
4. During compilation

1. adds a static (non-final) field to the form
2. adds code in class init to make an instance of itself and put it into the

static field
3. makes only a private no-argument method

5. Returns to compilation of the enclosing form
6. Adds a static final field in the class
7. Adds code in class init to access the class of the LTV form and the static field

(the lambda)
8. Adds code to set the static field in the LTV class to null

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

48

9. When the compiler encounters the LTV marker, it adds code to access the
static field

Here is the sequence of operations occurring while loading of the code of the original,
compiled form.

1. Original class init access the static field of the LTV class
2. The LTV class is initialized which resulted of there being an instance of the

LTV function
3. Original class calls the funcall method of the LTV function instance
4. Original class puts that value back into the static final field and now holds

the LTV value
5. Original class nulls out the static field in the LTV form class
6. The LTV form class has no other way to be accessed and can be GC’d
7. When code in the original class encounters the LTV marker, it just access the

static final field
A bit intricate, but it happens only once, at the correct time (loading in the runtime
environment), and leaves no tracks, and access to the value is very fast.

Dealing with quote is so similar to LTV that CLforJava does just that. When the com-
pile encounters a quote form that is the least bit complex (eg not numbers, charac-
ters, strings, or symbols), the form is transformed to an LTV and processed accord-
ingly.

4.5.Using Annotations

To date, Java annotations have not played a significant role in CLforJava. Their only
use is to hold the documentation string of a function. However, we have built on this
annotation to improve the internationalization of the product. When the compiler en-
counters a doc string, it creates a unique tag and stashes the string into a Java resource
keyed by the tag. The tag is also wired into the function class as a static final field.
The documentation function accesses the class field to get the tag and returns the
string the resource.

The location of the resource varies depending on the type of compilation. If the com-
pilation is an in-memory operation, the resource is just attached to the created class.
However, if the class is created as the result of a file compilation, the operation is
extended. At the end of the compilation, the compiler revisits each of the classes that
have the string resource and gathers all of the function doc strings. These are written
out to a resource (property file) using the tags as the keys. The documentation
function first attempts to find the string in the function class. If there is no direct ac-
cess to the string, it accesses the resource to find the string.

This would not be worth of the time to discuss it except for two additional actions.
First, the resource obeys the rules for Java properties including the ability to auto-

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

49

matically access a translated (localized) version of the documentation. The user can
change the language by setting or binding the extensions:*locale* variable. The
second characteristic is that the doc string is wrapped in an XML format which in-
cludes other information (such as the name of the function and the date/time it was
created). That supports the use of XSL transformations to display the documentation
in a variety of forms such as plain text or HTML.

5.Then There’s DEFSTRUCT

5.1.Overview

DEFSTRUCT is one of the few facilities in Common Lisp that define new types. In
addition, it is possible to redefine an existing structure while retaining the type defini-
tion - something that is difficult using the Java transformation facility. To make it
work in both worlds, we defined a pattern of classes that, in concert, can create new
structure classes, alter existing structure classes, make instances of the structure, act
as super classes (without having to make an actual subclass inheritance) for include
options, and retain the ability to access instances of prior structure instances when the
structure class is redefined.

The architecture follows the Abstract Factory pattern and is implemented around three
components, two interfaces and an abstract class, that define the core of the
defstruct facility. The interfaces, StructureClass and StructureClassFac-
tory, define the common components for all structures and factories. The other three
components specialize the type of the structure (the type of the defstruct), define
the concrete factory to create instances of the struct, and the instances of the structure
type themselves. While this seems overly complex, but except for the code that ma-
nipulates the slots in an instance, the 6 interfaces and classes take no more than 25
lines of Java code.

The following diagram illustrates the structure architecture:

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

50

The design also supports reuse of the type-defining Java interfaces when a
defstruct is redefined. For example, given a structure definition (defstruct foo
a b c), instance slots can be accessed by the forms FOO-A, FOO-B, and FOO-C. If
the struct were altered as (defstruct foo d a f), the accessors would be FOO-D,
FOO-A, and FOO-F. All existing instances of the prior struct can still be accessed by
FOO-A, FOO-B, and FOO-C. The FOO-A accessor works correctly for both definitions.
Note that the type of both struct instances are considered to be type FOO in Lisp and
Foo in Java. A similar mechanism works with included structs. A programmer may
specify the Java type of a structure by use the of extensions:java-class-name
declaration.

6. Conclusions

To date, this attempt to build a new Common Lisp by intertwining it with Java has
been a success. Our next large sub-projects are to make a new compiler written en-
tirely Lisp and implement the CLOS facility. The CLOS implementation is our vehi-
cle for directly accessing any Java library from Lisp without requiring Foreign Func-
tion Interface (FFI). Work has begun on the new compiler which should be online

«Class»
MyStructImpl

parent : StructureClass
trueFactory : MyStruct.Factory

getSlot(symbol) : Object
setSlot(symbol, value) : void

new Factory() :
MyStructImpl.Factory

«Interface»
StructureClass

getSlot(symbol) : Object

«Interface»
StructureClassFactory

newInstance(Object...) : StructureClass

«Interface»
MyStruct

factory : MyStruct. AbstractFactory

«Class»
MyStruct.AbstractFactory

trueFactory : StructureClassFactory

«AbstractClass»
StructureClassImpl

parent : StructureClass

«Class»
MyStruct.Factory

trueFactory : Factory;
newInstance(Object...) : StructureClass

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

51

next Fall. The new compiler will be more stable and much smarter. The work on
CLOS has started with basic data structures and a version of the topological sort that
can include Java classes in the sort. The remaining major component is the Condition
system and its integration into the Java runtime, although some investigation has
started.

7.References

Common Lisp For Java: An Intertwined Implementation, Boetje J, International Lisp
Conference, 2005

Unicode 4.0 in Common Lisp: Adoption of Unicode 4.0 in CLforJava, Boetje J, Inter-
national Lisp Conference, 2005

Foundational Actions: Teaching Software Engineering When Time Is Tight, Boetje J,
Proceedings of the 11th Annual SIGCSE Conference on Innovations and Technology
In Computer Science Education, 2006

A Metaobject Protocol for CLforJava, Cotton J, Boetje J, Proceedings of the 2007
International Lisp Conference, 2007

J. Boetje & S. Meler Marrying Common Lisp to Java, and eir Offspring

52

Tutorial: Computer Vision with Allegro Common Lisp and

the VIGRA Library using VIGRACL

Benjamin Seppke, Leonie Dreschler-Fischer
Department Informatik, University of Hamburg, Germany

{seppke, dreschler}@informatik.uni-hamburg.de

1 Introduction

In this tutorial we present the interoperability between the VIGRA C++ com-
puter vision library and Allegro Common Lisp. The interoperability is achieved
by an extension called VIGRACL, which uses a multi-layer architecture. We
describe this architecture and present some example usages of the extension.
Contrary to other computer vision extensions for Common Lisp we focus on a
generic design, which allows for easy interoperability using other programming
languages like PLT Scheme.

VIGRA is not just another computer vision library. The name stands for
”Vision with Generic Algorithms”. Thus, the library that puts its main empha-
sis on customizable and therefore generic algorithms and data structures (see
[Köthe 1999]). It uses template techniques similar to those in the C++ Standard
Template Library (STL) (see [Köthe 2000]), which allows for an easy adaption
of any VIGRA component to the special needs of computer vision developers
without losing speed efficiency (see [Köthe 2010]). The VIGRA library was orig-
inally designed and implemented by Ullrich Köthe as a part of his Ph.D. thesis.
Meanwhile, many people are involved to improve the library and the user group
is growing further. The library is currently in use for various educational and
research tasks in German Universities (e.g. Hamburg and Heidelberg) and has
proven to be a reliable (unit-tested) testbed for low-level computer vision tasks.

Although C++ can lead to very efficient algorithmic implementations, it is
still an imperative low-level programming language, that is not capable of inter-
active modeling. Thus, the VIGRA library also offers specialized numpy-bindings
for the Python programming language as a part of the current development snap-
shot.

Functional programming languages like Lisp on the other hand provide an
interesting view on image processing and computer vision because they sup-
port symbolic processing and thus symbolic reasoning at a higher abstraction
level. Common Lisp has already proven to be adequate for solving AI problems,
because of its advantages over other programming languages, like. the extend-
ability of the language, the steep learning curve, the symbolic processing, and

53

the clarity of the syntax. Moreover, there are many extensions for Lisp like e.g.
description logics, which support the processes of computer vision and image
understanding.

2 Related work

Before introducing the VIGRACL interface, we will compare some competitive
Common Lisp extensions, which also add image processing capabilities to Com-
mon Lisp:

The first system is the well-known OBVIUS (Object-Based Vision and Un-
derstanding System) for Lisp (see [Heeger and Simoncelli 2010]). It is an image-
processing system based on Common Lisp and CLOS (Common Lisp Object
System). The system provides a flexible interactive user interface for working
with images, image-sequences, and other pictorially displayable objects. It was
last updated on 1994, so it does not supply state-of-the-art algorithms used for
image processing and computer vision.

ViLi (Vision Lisp) has been developed by Francisco Javier Snchez Pujadas at
the Universitat Autnoma de Barcelona until 2003 (see [Snchez Pujadas 2010]).
Although it offers algorithms for basic image processing tasks, it seems to be
restricted to run only at Windows and to be no longer maintained.

IMAGO is another image manipulation library for Common Lisp developed
by Matthieu Villeneuve until 2007 (see [Villeneuve 2010]). It supports file load-
ing/saving in various formats and image manipulation functionalities . Although
it supports some basic filtering and composition tools, there are important image
processing parts missing like segmentation tools or the Fourier transform.

The last system is called ch-image (cyrus harmon image) and was last up-
dated in 2008 (see [Harmon 2010]). Like OBVIUS, it provides a CLOS Lisp
layer for image processing, but puts its main emphasize on computer graph-
ics (e.g. creating images containing graphical elements). This system introduces
many different classes for different image pixel types and therefore requires more
studying of the API than systems on a more abstract level.

Contrary to these systems, our proposed VIGRACL binding is generic, light-
weight, and offers advanced functions like image segmentation. There is no need
for introducing new data types or classes (using CLOS) in Allegro Common
Lisp. It currently provides the basic functionalities of the VIGRA library and
will be extended in future to 3D processing methods etc. Further, we do not
use named parameters, but named the function arguments according to their
meaning, which will be shown by auto-completion e.g. when using EMACS in
conjunction with Allegro Common Lisp.

Note that we will present a generic interface to the VIGRA library, that allows
for the use of many other languages and programming styles, although we favor

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

54

the use of the VIGRA in together with functional languages, like Common Lisp
or PLT Scheme (see [Seppke 2010]). The generic approach is also reflected in the
platform availability, as the VIGRACL has already proven to work with Allegro
Common Lisp at Windows, Linux or Mac.

3 Hierarchical Design of the VIGRACL

We will now present the embedding of the VIGRA’s algorithms into Allegro
Common Lisp. We will start with the lowest layer, and show how an image is
represented on the C++ side. We then iteratively move up layer to layer to end
by the Common Lisp high-order functions, which assist at the use of the library.
As an example, we show the representation of a classical image smoothing filter
at each level.

3.1 Lowest Layer: C++

At the lowest layer an image is represented by the VIGRA-Class BasicImage<T>.
The template parameter T determines the pixel-type of the image and can either
be a scalar type or a vector type (like [R,G,B]). At this layer we abstract a
to allow only two types of images: Images with a floating-point pixel-type and
images with a (R,G,B)-Vector of floating-point values. Multi-band images may
be supported in future releases.

try{
// Create result image of same size
vigra ::BasicImage <float > img2(img.width(), img.height ());

// Perform filtering with sigma =3.0
vigra :: gaussianSmoothing(srcImageRange(img),

destImage(img2), 3.0);
}
catch (vigra:: StdException & e){ }

3.2 Intermediate Layer: C (shared object)

At the intermediate layer, we create C-wrapper functions around the C++ func-
tions and types of the lowest layer. We favor the use of an own implementa-
tion instead of using automatic wrapper generation libraries like SWIG (see
[Beazley 1996]) to keep full control of the interface and its definitions. To allow
for an easy re-use of all the functions contained inside this shared object, we
make some minimalistic assumptions according to the programming language,
which connects to this wrapper library:

Image-bands are represented as one-dimensional C-arrays of type float, which
is sufficient for most tasks. For matrix-computation one-dimensional C-arrays of

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

55

type double are used. Additional function-parameters can either be boolean,
integer, float or double. The resulting type of each function is an integer, which
is also used to indicate errors. The pointer to these C-arrays will not be created,
maintained or deleted by the wrapper library. The client (Allegro Common Lisp)
has to take care of all array creation ans deletion tasks. All image functions are
yet defined to work band-wise.

It should be mentioned, that this layer results in a shared object (or DLL
under Windows) with a very simple interface: All interface signatures consist
of elementary C-data types or pointers to float and double. This simplifies the
use for other programming languages. Besides Allegro Common Lisp, we have
implemented interfaces for PLT Scheme and ittvis IDL (see [Seppke 2010]).
LIBEXPORT int vigra_gaussiansmoothing_c(const float *arr ,

const float *arr2 , const int width , const int height ,
const float sigma){
try {

// create a gray scale image of appropriate size
vigra:: BasicImageView <float > img (arr , width , height);
vigra:: BasicImageView <float > img2(arr2 , width , height);

vigra:: gaussianSmoothing(srcImageRange(img),
destImage(img2), sigma);

}
catch (vigra:: StdException & e) {

return 1;
}
return 0;

}

3.3 High layer: Allegro Common Lisp FFI

We now connect the wrapper library to Allegro Common Lisp using the built-
in Foreign Function Interface (FFI). For the representation of images we have
chosen lists of the (2D) array ype of the FFI. Each array depicts a certain band
of an image. The bands are ordered ’(Red Green Blue) for color images and
’(Gray) for grayscale images. We have chosen Allegro’s FFI instead of CFFI
because of the native array memory sharing between Common Lisp and C. The
corresponding FFI-adapter on the lisp side for the Gaussian smoothing of a
single band is given by:
(ff:def-foreign-call vigra_gaussiansmoothing_c

((arr (:array :float))
(arr2 (: array :float))
(width :int fixnum)
(height :int fixnum)
(sigma :float))

:returning (:int fixnum))

Note that the creation of images is also perfomed on this layer. The Lisp
function for the gaussian smoothing of an image band on this layer is given
below:

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

56

(defun gsmooth-band (arr sigma)
(let* ((width (array-dimension arr 0))

(height (array-dimension arr 1))
(arr2 (make-array (array-dimensions arr)

:element-type (array-element-type arr)
:initial-element 0.0)))

(case (vigra_gaussiansmoothing_c arr arr2
width height sigma)

((0) arr2)
((1) "Error in vigracl.filters.gsmooth: ..."))))

3.4 Highest layer: Allegro Common Lisp High-Order Functions

At the topmost layer, we provide a set of generic and flexible tools, which assist
in mapping and to traversing of images. These functions refer to both images
and image-bands. They can be seen as extensions to the well-known high-order
functions in Common Lisp, but fitted to the data types of images and image-
bands.

The first set of functions corresponds to the mapcar for lists. We define
array-map, array-map!, image-map and image-map! for this purpose. We will present
their use in the examples section of this tutorial. We also define folding operations
for bands and images: array-reduce and image-reduce. Further, we introduce
simple image- and band-iterator functions to write and apply own algorithms to
images: array-for-each-index and image-for-each-index.

Most image processing functions use the mapping facilities to apply a band-
defined image operation on each band of an image. For instance the gaussian
smoothing of an images is defined of the gaussian smoothing of all image’s bands:

(defun gsmooth (image sigma)
(mapcar #’(lambda (arr) (gsmooth-band arr sigma)) image))

Note that the VIGRACL introduces its own package namespace (VIGRACL)
and is defined as a Common Lisp system using Allegro’s excl:defsystem.

4 Interactive Examples

We will now present some examples that show the practical use of the VIGRACL.
The necessary first step is to let Allegro Common Lisp know where the library
is located. Afterwards, we can load the library using a single command:

CL-USER > :ld vigracl

If the library has been loaded successfully, you can switch into the package by
typing:

CL-USER > (in-package :vigracl)

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

57

You should get a response message from the Lisp system, which indicates that
you are inside the correct package. We now start with loading an image (taken
from [Ssawka 2010]):

VIGRACL > (setq img (loadimage "images/tools-bits.jpg"))

You can easily proof that this image is a RGB image by typing:

VIGRACL > (length img)

which counts the number of bands of the loaded image (three). Let us now try
some basic filters of the VIGRA that are based on convolution with Gaussian
kernels: Gaussian smoothing and the calculation of the Gaussian gradient mag-
nitude (both at scale σ = 2.0):

VIGRACL > (setq smooth_img (gsmooth img 2.0))
VIGRACL > (setq gradient_img (ggradient img 2.0))

(a) original image (b) smoothed image (c) gradient magnitude

Figure 1: The loaded image and filter results

We now demonstrate how to save these images using the saveimage function and
review the result using your favourite image browser, or view the result directly
using the built-in function showimage, i.e. for the smoothed image:

VIGRACL > (saveimage smooth_img "images/smooth_bits.png")
VIGRACL > (showimage smooth_img)

Both functions will return true, if the saving is successful and print out
error messages otherwise. Note that various image formats are supported for the
import and export of images.

The next task will be counting the bits that are visible on our loaded image.
They appear darker that the background on all bands, so we will work with a
single-band image from now on:

VIGRACL > (setq gray_img (list (second img)))

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

58

We have arbitrary selected the green channel and defined a new image. To
detect whether a pixel corresponds to an object, we will start with writing our
first own image processing algorithm, a thresholding filter:

VIGRACL > (defun threshold (image val)
(image-map #’(lambda (x)

(if (> x val) 0.0 255.0)) image))
VIGRACL > (setq thresh_img (threshold gray_img 220.0))

As you can see in Figure 2, there is no threshold that perfectly separates the
objects from the background. On a low threshold, many parts inside the bits
remain classified as background whereas on the higher threshold some image
content around the objects is misclassified.

(a) t = 190 (b) t = 220 (c) t = 250

Figure 2: Results of thresholding the green channel of Figure 1(a)

For a correct segmentation of the bits from the background, we need to close
the holes inside of the thresholded image (with t = 220). This operation is
performed by a morphological operator called closing. We select a radius of 5
pixel to close the unwanted holes:

(setq closed_img (closingimage thresh_img 5))

We can also visualize the segmentation to mask out the original image using
the high-order functions of the VIGRACL:

(showimage (image-map #’(lambda (i m) (* i (/ m 255.0)))
gray_img closed_img))

At last, we need to count the to connected components of the image to get the
number of objects. This is performed by a labeling algorithm, which assigns each
component an unique label. Note that the background will also be counted as
one component. Therefore, the result has to be decremented by one.

(setq label_img (labelimage closed_img))
(setq bit_count (- (first (image-reduce #’max label_img 0.0))

1))

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

59

(a) segmented image (b) masked green channel (c) labeled image

Figure 3: Results after the closing image operation of Figure 2(b)

This finally results in a bit_count of 4, which means that four objects have been
recognized (see Figure 3(c)). Next possible steps could be the measurement of
size, mean intensity or other features of each labeled component.

5 Conclusions

We have presented some of the functionalities for the VIGRACL extension to
Allegro Common Lisp. The extension uses a multi-layer architecture to grant ac-
cess to the computer vision algorithms that are provided by the VIGRA library.
Note that this tutorial cannot be more than an introduction into the interesting
field of computer vision besides the presentation of the inter-operational design
of the VIGRACL. However, it shows how easy the various functions of the VI-
GRA can be used within Allegro Common Lisp, given a light-weight generic
interface.

We have shown that the integrated high-order functions for images and
image-bands help when working with the library as they extend the well-known
high-order functions by means of image-bands and images. Thus, we currently
use the VIGRACL-bindings for research to assists with the low-level image pro-
cessing tasks that have to taken out before the symbolic processing. Another
advantage is the use for fast interactive image analyzing in scientific computing.

Due to the steep learning curve and interactive experience, we currently use
the very similar VIGRAPLT (a VIGRA interface to PLT Scheme using the same
intermediate layer) in undergraduate student computer vision projects.

References

[Beazley 1996] D. Beazley, SWIG: an easy to use tool for integrating scripting lan-
guages with C and C++, In: Proceedings of the Fourth USENIN Tcl/Tk Workshop,
1996, pp. 129-139.

[Harmon 2010] C. Harmon, The ch-image Homepage, http://cyrusharmon.org/
static/projects/ch-image/doch/ch-image.xhtml (Jan. 27, 2010)

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

60

[Heeger and Simoncelli 2010] D. Heeger, E.Simoncelli, The OBVIUS Homepage,
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/vision/
obvius/0.html (Jan. 27, 2010)

[Köthe 1999] U. Köthe, Reusable Software in Computer Vision, in: B. Jhne, H.
Hauecker, P. Geiler: ”Handbook on Computer Vision and Applications”, vol. 3,
A. Press, 1999.

[Köthe 2000] U. Köthe, STL-Style Generic Programming with Images, in : C++ Re-
port Magazine 12(1), January 2000

[Köthe 2010] U. Köthe, The VIGRA Homepage, http://hci.iwr.uni-heidelberg.
de/vigra/ (Jan. 26, 2010).

[Roerdink and Meijster 2000] J. B. T. M. Roerdink, and A. Meijster (2000). The water-
shed transform: Definitions, algorithms, and parallellization strategies. In Goutsias,
J. and Heijmans, H., editors, Mathematical Morphology, vol. 41, pages 187228. IOS
Press.

[Snchez Pujadas 2010] F. J. Snchez Pujadas, The ViLi Homepage, http://www.cvc.
usb.es/~javier/vili.htm (Jan. 27, 2010)

[Seppke 2010] B. Seppke, Digital image processing using Allegro Common Lisp and
VIGRA = VIGRACL, http://kogs-www.informatik.uni-hamburg.de/~seppke/
index.php?page=vigracl&lang=en (Jan. 26, 2010).

[Ssawka 2010] Ssawka, Image of four bits, http://commons.wikimedia.org/w/index.
php?title=File:PZ_1-4_0.jpg&oldid=26986252

[Villeneuve 2010] M. Villeneuve, IMAGO Common Lisp image manipulation library,
http://matthieu.villeneuve.free.fr/dev/imago/, (Feb. 1, 2010)

B. Seppke & L. Dresler-Fiser Tutorial: Computer Vision using VIGRACL

61

e Language

CLOX: Common Lisp Objects for XEmacs

Didier Verna
(Epita Research and Development Laboratory, Paris, France

didier@xemacs.org)

Abstract CLOX is an ongoing attempt to provide a full Emacs Lisp implementation
of the Common Lisp Object System, including its underlying meta-object protocol,
for XEmacs. This paper describes the early development stages of this project. CLOX
currently consists in a port of Closette to Emacs Lisp, with some additional features,
most notably, a deeper integration between types and classes and a comprehensive
test suite. All these aspects are described in the paper, and we also provide a feature
comparison with an alternative project called Eieio.
Key Words: Lisp, Object Orientation, Meta-Object Protocol
Category: D.1.5, D.3.3

1 Introduction

Note: the author is one of the core maintainers of XEmacs. In this paper, the
term Emacs is used in a generic way to denote all flavors of the editor. If a
distinction needs to be made, we use either GNU Emacs or XEmacs where appro-
priate.

1.1 Context

The XEmacs1 project started almost twenty years ago after a split from GNU
Emacs. This is perhaps the most popular “fork” in the whole free software history.
Nowadays, the codebase of XEmacs consists of roughly 400,000 lines of C code
[C, 1999] (including the implementation of the Lisp engine) and 200,000 lines of
Emacs Lisp. In addition to that, the so-called “Sumo” packages, a collection of
widely used third-party libraries distributed separately, amounts to more than
1,700,000 lines of Emacs Lisp code.

Over the years, XEmacs has considerably diverged from GNU Emacs. While
the XEmacs development team tries to maintain compatibility for the common
functions of the Lisp interface, some features, also accessible at the Lisp level, are
exclusive to XEmacs (extents and specifiers are two common examples). Because
of these differences between both editors, writing truly portable code is not easy.
In some cases, the existence of compatibility layers makes the task a bit easier.
For instance, the implementation of overlays (logical parts of text with local
1 http://www.xemacs.org

63

properties) in XEmacs is in fact designed to wrap around extents, our native and
more or less equivalent feature.

There is one place, however, in which compatibility with GNU Emacs is nei-
ther required nor a problem: the implementation of the editor itself, including
its Lisp dialect. After almost twenty years of independent development, it is safe
to say that the internals of XEmacs have very little left in common with the
original codebase, let alone with the current version of GNU Emacs.

One thing that should immediately strike a newcomer to the internals of
XEmacs is the very high level of abstraction of its design. For instance, many
editor-specific concepts are available at the Lisp layer: windows, buffers, markers,
faces, processes, charsets etc.. In XEmacs, every single one of these concepts is
implemented as an opaque Lisp type with a well-defined interface to manipulate
it. In the current development version, there is 111 such types, 35 of which are
visible at the Lisp level (the rest being used only internally).

The other important point here is that although the core of the editor is
written in C, there is a lot of infrastructure for data abstraction and sometimes
even for object orientation at this level as well. The examples given below should
clarify this.

Polymorphism. Many data structures in XEmacs provide a rudimentary
form of polymorphism and class-like abstraction. For instance, the console type
is a data structure containing general data members, but also a type flag indi-
cating which kind of console it is (X11, Gtk, tty etc.), and a pointer to a set
of type-specific console data. Each console type also comes with a set of type-
specific methods (in a structure of function pointers) . This provides a form of
polymorphism similar to that of record-based object systems [Cardelli, 1988] in
which methods belong to classes.

Accessors. Instead of accessing structure members directly, every data type
comes with a set of pre-processor macros that abstract away the underlying
implementation. For instance, the macro CONSOLE_NAME returns the name of the
console, whatever the underlying implementation. This might be considered as
more typical of data abstraction in general than object-orientation though.

Dynamic method lookup. There is even an embryonic form of dynamic
method lookup which looks very much like Objective-C’s informal protocols,
or (as of version 2.0 of the language), formal protocols with optional methods
[Apple, 2009]. For instance, in order to “mark” a console, without knowing if
it even makes sense for that particular console type, one would try to call the
mark_console method like this:

MAYBE_CONMETH (console, mark_console, ...);

The XEmacs internals are in fact so much object-oriented that the author
has raised the idea of rewriting the core in C++ [C++, 1998] directly several
times in the past. However, this issue is still controversial.

D. Verna CLOX : Common Lisp Objects for XEmacs

64

1.2 Motivation

It is interesting to note that contrary to the internals of XEmacs, there seem to
be much less trace of object-oriented design at the Lisp level (whether in the
kernel or in the distributed packages), and when there is, it is also much less
apparent. Several hypothesis come to mind, although it could be argued that
this is only speculation.

– Most of our Lisp interface is still compatible with that of GNU Emacs, and
maintaining this compatibility is an important requirement. This situation
is completely different from that of the core, which we are completely free
to rewrite as we please.

– The need for object orientation in the Lisp layer might be less pressing than
in the core. Indeed, many of the fundamental concepts implemented by the
editor are grounded in the C layer, and the Lisp level merely provides user-
level interfaces for them.

– The Lisp packages, for an important part, are only a collection of smaller,
standalone utilities written by many different people in order to fulfill specific
needs, and are arguably of a lower general quality than the editor’s core.
Emacs Lisp contributors are numerous and not necessarily skilled computer
scientists, as they are primarily Emacs users, trying to extend their editor of
choice, and often learning Emacs Lisp on the occasion. Besides, it wouldn’t be
their job to provide a language-level feature such as a proper object system.

– Finally, it can also be argued that Lisp is so expressive that an object system
(whether proper or emulated) is not even necessary for most packages, as
similar features can be hacked away in a few lines of code. In other words,
it is a well-known fact that good quality code requires more discipline from
the programmer, and that the “quick’n dirty” programming paradigm is on
the other hand very affordable, and unfortunately widely used.

These remarks make up for the first motivation in favor of a true object sys-
tem: the author believes that if provided with such a tool, the general quality,
extensibility and maintainability of the Lisp code would improve. More specifi-
cally:

– Existing C-based features could provide a true object-oriented interface to
the user, in coherence with what they are at the C level.

– Lisp-based features would also greatly benefit from a true object-oriented
implementation. The author can think of several ones, such as the custom
interface, the widget code, the support for editing mode and fontification
etc.

D. Verna CLOX : Common Lisp Objects for XEmacs

65

– Finally, the potential gain is also very clear for some already existing third-
party packages. The author thinks especially of Gnus2, a widely used mail and
news reader that he also helps maintaining. This package is almost as large
as the whole XEmacs Lisp layer, and provides concepts (such as backends)
that are object-oriented almost by definition.

Once the gain from having a true Emacs Lisp object system asserted, the
next question is obviously which one. We are far from pretending that there
is only one answer to this question. Emacs Lisp being an independent Lisp
dialect, we could even consider designing a brand new object system for it.
However, the author has several arguments that would go in favor of Clos
[Bobrow et al., 1988, Keene, 1989], the object system of the Common Lisp lan-
guage [Ansi, 1994].

– Emacs Lisp is a dialect of Lisp mostly inspired from MacLISP [Moon, 1974,
Pitman, 1983] but also by Common Lisp. There are many similarities be-
tween Emacs Lisp and Common Lisp, and because of that, a number of
Emacs Lisp developers are in fact familiar with both (the author is one of
them). Emacs provides a Common Lisp emulation package known as cl. A
quick survey of the Sumo packages shows that 16% of the distributed files
require cl to work. In terms of actual lines of code, the ratio amounts to
27%. Given that these numbers don’t even count indirect dependencies, this
is far from negligible.

– At least in the subjective view of the author, Clos is one of the most ex-
pressive object system available today, and there is freely available code on
which to ground the work.

– There is one Emacs Lisp package that already uses a Clos-like object system
(see section 1.3 on the following page). This package is rather large, as it sums
up to almost 70,000 lines of code.

– Having Clos in Emacs Lisp would considerably simplify the porting of ex-
isting Common Lisp libraries that could be potentially useful in Emacs. It
could also be a way to attract more Common Lisp programmers to Emacs
Lisp development.

– Clos is already very well documented (books, tutorials etc.) and we can
take advantage of that.

– Last but not least, the author is interested in gaining expertise in the design
and implementation of Clos and its accompanying meta-object protocol
[Paepcke, 1993, Kiczales et al., 1991] (Mop for short). Implementing one is
a very good way to achieve this goal.

2 http://www.gnus.org

D. Verna CLOX : Common Lisp Objects for XEmacs

66

1.3 Alternatives

The author is aware of two alternative object systems for Emacs Lisp.

– The first one is called Eoops [Houser and Kalter, 1992] (Emacs Object-
Oriented Programming System). It implements a class-based, single inheri-
tance, object system with explicit message passing in the vein of Smaltalk-80
[Goldberg and Robson, 1983]. This system dates back to 1992 and the code
doesn’t seem to have evolved since then. None of the Sumo packages use it
and we are not aware of any other Emacs Lisp library using it either.

– The second one is called Eieio (Enhanced Implementation of Emacs In-
terpreted Objects). It is part of the Cedet3 package (Collection of Emacs
Development Environment Tools). Eieio is more interesting to us because
our goals are similar: it is designed to be a Clos-like object system. Eieio
provides interesting additional features like debugging support for methods,
but apparently, it doesn’t aim at being fully Clos-compliant.

The remainder of this paper is as follows. In section 2, we describe the first
stage of this project, consisting in a port of Closette to Emacs Lisp. An overview
of the differences between Common Lisp and Emacs Lisp is provided, as well
as a more detailed description of how the most problematic issues are solved.
In section 3 on page 9, we describe how a deeper integration between types
and classes is achieved, with respect to what Closette originally offers. Finally,
section 4 on page 13 provides an overview of the features available in CLOX, and
compares the project with Eieio.

2 Closette in Emacs Lisp

In order to combine the goals of providing Clos in XEmacs and learning more
about its internals at the same time, starting from “Closette” seemed like a good
compromise. Closette is an operational subset of Clos described in “The Art
of the Meta-Object Protocol” [Kiczales et al., 1991] (Amop for short) and for
which source code is available. Consequently, Closette constitutes a convenient
base on which to ground the work, without starting completely from scratch.
The first step of this project was hence to port Closette to Emacs Lisp. This
section describes the most interesting aspects of the porting phase.

2.1 Emacs Lisp vs. Common Lisp

While both dialects are similar in many ways, there are some important differ-
ences that can make the porting somewhat tricky at times.
3 http://cedet.sourceforge.net/eieio.shtml

D. Verna CLOX : Common Lisp Objects for XEmacs

67

2.1.1 Fundamental differences

“Fundamental” differences are obvious ones that might require deep changes in
the code. The following differences are considered fundamental: Emacs Lisp is
dynamically scoped instead of lexically scoped, has no package system, a dif-
ferent condition system, a limited lambda-list syntax, a different and reduced
formating and printing facility, and also a different set of types.

2.1.2 Subtle differences

“Subtle” differences are less important ones, but which on the other hand might
be less obvious to spot. For instance, some functions (like special-operator-p
vs. special-form-p) have different names in the two dialects (this particular
case is now fixed in XEmacs). Some others like defconst vs. defconstant have
similar names but in fact different semantics. Some functions (like mapcar) have
the same name but behave differently.

Another example is the function special operator which returns a functional
value in Common Lisp but simply returns its argument unevaluated in Emacs
Lisp. In fact, in Emacs Lisp, function is just like quote except that the byte-
compiler may compile an expression quoted with function.

The fact that function in Emacs Lisp behaves like quote might be puzzling
for a Common Lisp programmer, but this is because Emacs Lisp accepts a list
beginning with lambda as a function designator. For instance, the following two
lines are equivalent and valid for an Emacs Lisp interpreter, whereas the first
one would fail in Common Lisp:

(funcall ’(lambda (x) x) 1)
(funcall #’(lambda (x) x) 1)

2.1.3 Historical differences

In addition to that, Emacs Lisp is still evolving (this appears to be the case
in both GNU Emacs and XEmacs) and the changes are not always clearly doc-
umented, if at all. For instance, Emacs Lisp keywords were not self-evaluating
before 1996, the #’ syntax exists since XEmacs 19.8 only, characters were not
a primitive type until XEmacs 20, and until August 2009, Common Lisp style
multiple values were emulated with lists (they are now built-in). CLOX is not in-
terested in maintaining backward compatibility with legacy versions of XEmacs
or Emacs Lisp, and to be on the safe side, running it typically requires a recent
checkout of the 21.5 Mercurial repository4 (no later than beta 29).
4 http://xemacs.org/Develop/hgaccess.html

D. Verna CLOX : Common Lisp Objects for XEmacs

68

2.2 The cl package

Emacs provides a Common Lisp emulation package called “cl”, which is of a
tremendous help for porting code from Common Lisp to Emacs Lisp. For the
most part, this package provides a number of utility functions or macros that
belong to the Common Lisp standard but are not available in raw Emacs Lisp
(the almighty loopmacro is one of them). A number of already existing (but lim-
ited) functions are extended to the full Common Lisp power, in which case their
names are suffixed with a star (e.g. mapcar*). cl provides defun*, defmacro*
etc. to enable the full Common Lisp lambda-list syntax, a version of typep and
generalized variables via setf, defsetf etc. (cl, however, does not support more
modern “setf functions”).

The remainder of this section provides more details on a couple of interesting
porting issues.

2.2.1 Dynamic vs. lexical scoping

Perhaps the most important difference between Common Lisp and Emacs Lisp
is the scoping policy. Emacs Lisp is dynamically scoped while Common Lisp
has lexical scope by default. cl provides a construct named lexical-let (and
its corresponding starred version) that simulates Common Lisp’s lexical binding
policy via gensym’ed global variables. While a brutal replacement of every single
let construct in Closette would have been simpler, a careful study of the code
reveals that this is unnecessary for the most part.

First of all, in the majority of the cases, function arguments or let bindings
are used only locally. In particular, they are not propagated outside of their
binding construct through a lambda expression. Consequently, there is no risk
of variable capture and Emacs Lisp’s built-in dynamically scoped let form is
sufficient (it also happens to be more efficient than lexical-let).

Secondly, many cases where a true lexical closure is normally used actually
occur in so-called “downward funarg” situations. In such situations, the closure is
used only during the extent of the bindings it refers to. Listing 1 on the following
page gives such an example. The extent of the variable required-classes is
that of the function. However, the lambda expression that uses it (as a free
variable) only exists within this extent. Note that this situation is not completely
safe, as accidental variable capture could still occur in remove-if-not. With a
proper naming policy for variables, this risk is considerably reduced, although
not completely avoided. In particular, the cl package adopts a consistent naming
convention (it uses a cl- prefix) so that true lexical bindings are unnecessary in
practice.

There is a third case in which true lexical bindings can still be avoided, al-
though the situation is an “upward funarg” one: a function that is being returned

D. Verna CLOX : Common Lisp Objects for XEmacs

69

(defun compute-applicable-methods-using-classes (gf required-classes)
#| . . . |#

(remove-if-not #’(lambda (method)
(every #’subclassp

required-classes
(method-specializers method)))

(generic-function-methods gf))
#| . . . |#)

Listing 1: Downward funarg example

and hence might be used outside of the (dynamic) extent of the bindings it refers
to. Listing 2 on the next page shows three different versions of the same function.

1. The first one is the original one from Closette. You can see that the returned
function has a closure over two variables, which are lexically scoped and have
indefinite extent: methods and next-emfun.

2. The second one follows the logical course of action in Emacs Lisp, using
cl’s lexical-let construct. Recall that function arguments are dynamically
bound as well, so we also need to lexically rebind the methods variable.
Bindings established by lexical-let are garbage-collected when the last
reference to them disappears, so they indeed get indefinite extent.

3. It turns out, however, that we can still avoid lexical bindings here, by par-
tially evaluating the lambda expression before returning it, as demonstrated
in the third version. Remember that in Emacs Lisp, a lambda expression is in
fact a self-quoting form, and simply returns a list with the symbol lambda in
its car. Since methods and next-emfun happen to be constants here, we can
pre-evaluate them before returning the lambda expression, hence getting rid
of their names which should have been lexically scoped. Finally, note that it
is not possible to use function or #’ on a quasiquote’ed form, so one might
want to call byte-compile explicitely on the resulting anonymous function.

Given these particular cases, it turns out that there are only half a dozen places
where true lexical bindings are necessary.

2.2.2 Full blown Common Lisp lambda-lists

Because Emacs Lisp is restricted to mandatory, &optional and &rest argu-
ments, the cl package provides replacements for defun, defmacro etc. CLOX
uses these wrappers extensively for its own code, but the question of lambda-
lists for generic functions and methods arise. By digging into the internals of cl,
we are able to provide that at little development cost.

D. Verna CLOX : Common Lisp Objects for XEmacs

70

(defun compute-primary-emfun (methods)
(if (null methods)

nil

; ; Common Lisp version :
(let ((next-emfun (compute-primary-emfun (cdr methods))))

#’(lambda (args)
(funcall (method-function (car methods)) args next-emfun)))

; ; Lexical ly scoped Emacs Lisp version :
(lexical-let ((methods methods)

(next-emfun (compute-primary-emfun (cdr methods))))
#’(lambda (args)

(funcall (method-function (car methods)) args next-emfun)))

; ; Part ia l ly evaluated Emacs Lisp version :
(let ((next-emfun (compute-primary-emfun (cdr methods))))

‘(lambda (args)
(funcall (method-function ’,(car methods)) args ’,next-emfun)))

Listing 2: Upward funarg example

Internally, cl uses a function named cl-transform-lambda to both reduce a
full blown Common Lisp lambda-list into what Emacs Lisp can understand, and
provide the machinery needed for binding the original arguments. Listing 3 on
the following page shows an example of lambda-list transformation. Note that
the purpose of the second let form is to check for the validity of keyword argu-
ments, and disappears if &allow-other-keys is provided. In the CLOX function
compute-method-function, we take care of wrapping method bodies into a call
to cl-transform-lambda, hereby providing generic functions with full blown
Common Lisp lambda-lists.

Internally (for efficiency reasons), cl-transform-lambda uses memq to re-
trieve keyword arguments and hence looks for them at odd-numbered locations
as well as even-numbered ones. The drawback of this approach is that a keyword
parameter cannot be passed as data to another keyword. Since this does not ap-
pear to be much of a problem, we didn’t do anything to fix this. This could
change in the future, under the condition that the performance of keyword pro-
cessing in CLOX does not turn out to be critical.

Also, note that we don’t want generic calls to behave differently from normal
function calls, so the bindings established by methods remain dynamic.

3 Type/classes integration

Aside from the language differences described in the previous section, the next
big challenge to have a working system is to integrate types and classes. This
section provides some insight on how this is currently done.

D. Verna CLOX : Common Lisp Objects for XEmacs

71

; ; Original lambda−expression :
(lambda (a &optional (b ’b) &key (key1 ’key1))

BODY)

; ; Transformed lambda−expression :
(lambda (a &rest -- rest--39249)

(let* ((b (if -- rest--39249 (pop -- rest--39249) (quote b)))
(key1 (car (cdr (or (memq :key1 -- rest--39249)

(quote (nil key1)))))))
(let ((-- keys--39250 -- rest--39249))

(while -- keys--39250
(cond ((memq (car -- keys--39250)

(quote (:key1 :allow-other-keys)))
(setq -- keys--39250 (cdr (cdr -- keys--39250))))

((car (cdr (memq :allow-other-keys -- rest--39249)))
(setq -- keys--39250 nil))

(t
(error "Keyword␣argument␣%s␣not␣one␣of␣(:key1)"

(car -- keys--39250))))))
BODY))

Listing 3: Lambda-list transformation example

3.1 Built-in types

As mentioned in the introduction, XEmacs has many opaque Lisp types, some
resembling those of Common Lisp (e.g. numbers), some very editor-specific (e.g.
buffers). In XEmacs, there are two basic Lisp types: integers and characters.
All other types are implemented at the C level using what is called “lrecords”
(Lisp Records). These records include type-specific data and functions (in fact,
function pointers to methods for printing, marking objects etc.) and are all
cataloged in an lrecord_type enumeration. It is hence rather easy to keep track
of them.

Some of these built-in types, however, are used only internally and are not
supposed to be visible at the Lisp layer. Sorting them out is less easy. The current
solution for automatic maintenance of the visible built-in types is to scan the
lrecord_type enumeration and extract those which provide a type predicate
function at the Lisp level (the other ones only have predicate macros at the C
level). Provided that the sources of XEmacs are around, this can be done directly
in a running session in less than 30 lines of code.

3.2 Type predicates

3.2.1 type-of

Emacs Lisp provides a built-in function type-of which works for all built-in
types. Because this function is built-in, it doesn’t work on CLOX (meta-)objects.
It will typically return vector on them, because this is how they are implemented
(Closette uses Common Lisp structures, but these are unavailable in Emacs Lisp

D. Verna CLOX : Common Lisp Objects for XEmacs

72

so the cl package simulates them with vectors). In theory, it is possible to wrap
this function and emulate the behavior of Common Lisp, but this has not be
done for the following reasons.

– Firstly, we think it is better not to hide the true nature of the Lisp objects
one manipulates. What would happen, for instance, if a CLOX object was
passed to an external library unware of CLOX and using type-of ?

– Secondly, having a working type-of is not required for a proper type/class
integration (especially for method dispatch).

– Finally, since CLOX is bound to be integrated into the C core at some point,
this problem is likely to disappear eventually.

3.2.2 typep

Having an operational typep is more interesting to us, and in fact, the cl
package already provides it. cl’s typep is defined such as when the requested
type is a symbol, a corresponding predicate function is called. For instance,
(typep obj ’my-type) would translate to (my-type-p obj).

In order to enable calls such as (typep obj ’my-class), we simply need
to construct the appropriate predicate for every defined class. In CLOX, this is
done inside ensure-class. The predicate checks that the class of obj is either
my-class or one of its sub-classes.

In Common Lisp, typep works on class objects as well as class names. This
is a little problematic for us because class objects are implemented as vectors,
so typep won’t work with them. However, we can still make this work in a
not so intrusive way by using the advice Emacs Lisp library. Amongst other
things, this library lets you wrap some code around existing functions (not unlike
:around methods in Clos) without the need for actually modifying the original
code. CLOX wraps around the original type checking infrastructure so that if the
provided type is in fact a vector, it is assumed to be a class object, and the
proper class predicate is used.

3.2.3 Generic functions

Generic functions come with some additional problems of their own. In Common
Lisp, once you have defined a generic function named gf, the generic function
object returned by the call to defgeneric is the functional value itself (a fun-
callable object). In Emacs Lisp, this is problematic for two reasons.

1. Since generic functions are objects, they are implemented as vectors. On the
other hand, the associated functional value is the generic function’s discrim-
inating function, which is different.

D. Verna CLOX : Common Lisp Objects for XEmacs

73

2. Moreover, Emacs Lisp’s function behaves more or less like quote, so it will
return something different from symbol-function.

In order to compensate for these problems, CLOX currently does the following.

– A function find-generic-function* is defined to look for a generic function
(in the global generic function hash table) by name (a symbol), functional
value (the discriminating function, either interpreted or byte-compiled), or
directly by generic function object (note that this can be very slow).

– Assuming that a generic function is defined like this:

(setq mygf (defgeneric gf #|...|#))
(typep mygf ’some-gf-class) ;; already working correctly

Class predicates (most importantly for generic function classes) are made to
decide whether the given object denotes a generic function in the first place,
allowing for the following calls to work properly as well:

(typep (symbol-function ’gf) ’some-gf-class)
(typep #’gf ’some-gf-class) ;; #’gf is more or less like ’gf

Note that thanks to the advice mechanism described in section 3.2.2 on
the previous page, these calls will also work properly when given a generic
function class object instead of a name.

– find-method is extended in the same way, so that it accepts generic function
objects, discriminating functions or even symbols.

– Finally, CLOX defines a function class. Consequently, in order for
(typep obj ’function) to work properly, a second advice on the type
checking mechanism is defined in order to try the function class predi-
cate first, and then fallback to the original functionp provided by Emacs
Lisp.

Our integration of generic functions into the type system has currently one
major drawback: it is impossible as yet to specialize on functions (either generic,
standard, or even built-in). The reason is a potential circularity in class-of, as
described below.

In order to be able to specialize on functions, we need class-of to call
find-generic-function*. However, find-generic-function* might need to
access a generic function’s discriminating function which is done through
slot-value, which, in turn, calls class-of. This problem is likely to remain
for as long as CLOX generic function objects are different from their functional
values. In other words, it is likely to persist until the core of CLOX is moved to
the C level.

D. Verna CLOX : Common Lisp Objects for XEmacs

74

4 Project Status

In this section, we give an overview of the current status of CLOX, and we also
position ourselves in relation to Eieio.

4.1 Available Features

As mentioned earlier, stage one of the project consisted in a port of Closette
to Emacs Lisp. As such, all features available in Closette are available in CLOX.
For more information on the exact subset of Clos that Closette implements,
see section 1.1 of the Amop. In short, the most important features that are still
missing in CLOX are class redefinition, non-standard method combinations, eql
specializers and :class wide slots.

On the other hand, several additional features have been added already. The
most important ones are listed below.

– CLOX understands the :method option in calls to defgeneric.

– Although their handling is still partial, CLOX understands all standard op-
tions to defgeneric calls and slot definitions, and will trigger an error when
the Common Lisp standard requires so (for instance, on multiply defined
slots or slot options, invalid options to defgeneric etc.).

– CLOX supports the slot-unbound protocol and emulates
unbound-slot-instance and cell-error-name. This is because the
condition system in Emacs Lisp differs from that of Common Lisp. In
particular, Emacs Lisp works with condition names associated with data
instead of providing condition objects with slots.

– CLOX supports a slot-missing protocol similar to the slot-unbound one.
In particular, it provides a missing-slot condition which Common Lisp
doesn’t provide. Common Lisp only provides unbound-slot.

– CLOX provides a full-blown set of the upmost classes in the standard
Common Lisp hierarchy, by adding the classes class, built-in-class,
function, generic-function and method. The other basic classes like
standard-object already exist in Closette.

– Finally, CLOX provides an almost complete type/class integration, which has
been described in section 3 on page 9.

Eieio is currently farther away from Clos than CLOX already is. Eieio is
not built on top of the Mop, doesn’t support built-in type/class integration and
misses other things like :around methods, the :method option to defgeneric
calls, and suffers from several syntactic glitches (for instance, it requires slot

D. Verna CLOX : Common Lisp Objects for XEmacs

75

definitions to be provided as lists, even if there is no option to them). Eieio
doesn’t handle Common Lisp style lambda-lists properly either.

On the other hand, Eieio provides some additional functionality like a class
browser, automatic generation of TeXinfo5 documentation, and features obvi-
ously inspired from other object systems, such as abstract classes, static methods
(working on classes instead of their instances) or slot protection ala C++. The
lack of a proper Mop probably justifies having these last features implemented
natively if somebody needs them.

4.2 Testing

Given the subtle differences between Common Lisp and Emacs Lisp (especially
with respect to scoping rules), the initial porting phase was expected to be error-
prone. Besides, bugs introduced by scoping problems are extremely difficult to
track down. This explains why a strong emphasis has been put on correctness
from the very beginning of this project. In particular, we consider it very impor-
tant to do regular, complete and frequent testing. This discipline considerably
limits the need for debugging, which is currently not easy for the following rea-
sons.

– CLOX is not equipped (yet) for edebug, the Emacs interactive debugger, so
we can’t step into it.

– CLOX is not (yet) grounded in the C layer of XEmacs, so we have to use
the regular printing facility for displaying (meta-)objects. However, the cir-
cular nature of CLOX requires that we limit the printer’s maximum nesting
level, hereby actually removing potentially useful information from its out-
put. We also have experimented situations in which XEmacs itself crashes
while attempting to print a CLOX object.

– Finally, most of the actual code subject to debugging is cluttered with gen-
sym’ed symbols (mostly due to macro expansion from the Common Lisp
emulation package) and is in fact very far from the original code, making it
almost unreadable. See listing 3 on page 10 for an example.

Apart from limiting the need for debugging, a complete test suite also has the
advantage of letting us know exactly where we stand in terms of functionality
with respect to what the standard requires. Indeed, tests can fail because of a
bug, or because the tested feature is simply not provided yet.

When the issue of testing came up, using an existing test suite was considered
preferable to creating a new one, and as a matter of fact, there is a fairly complete
one, written by Paul Dietz [Dietz, 2005]. The Gnu Ansi Common Lisp test
5 http://www.gnu.org/software/texinfo

D. Verna CLOX : Common Lisp Objects for XEmacs

76

suite provides almost 800 tests for the “Objects” section of the Common Lisp
standard, but there are also other tests that involve the object system in relation
with the rest of Common Lisp (for instance, there are tests on the type/class
integration). Currently, we have identified more than 900 tests of relevance for
CLOX, and we expect to find some more. Also, note that not all of the original
tests are applicable to CLOX, not because CLOX itself doesn’t comply with the
standard, but because of radical differences between Common Lisp and Emacs
Lisp.

The test suite offered by Paul Dietz is written on top of a Common Lisp
package for regression testing called “rt” [Waters, 1991]. Given the relatively
small size of the package (around 400 lines of code), we decided to port it to
Emacs Lisp. All porting problems described in section 2 on page 5 consequently
apply to rt as well. The result of this port is an Emacs Lisp package of the
same name, which is available at the author’s web site6. The test suite itself also
needed some porting because it contains some infrastructure written in Common
Lisp (and some Common Lisp specific parts), but the result of this work is that
we now have the whole 900 tests available for use with CLOX.

As of this writing, CLOX passes exactly 416 tests, that is, a little more than
50% of the applicable test suite. It is important to mention that the tests that
currently fail are all related to features that are not implemented yet. In other
words, all the tests that should work on the existing feature set actually pass.
Eieio, on the other hand, passes only 115 tests, that is, around 12% of the
applicable test suite. As far as we could see, many of the failures are due the
lack of type/class integration.

4.3 Performance

As mentioned earlier, we are currently giving priority to correctness over speed
and as such, nothing premature has been done about performance issues in
CLOX (in fact, the performance is expected to be just as bad as that of Closette).
Out of curiosity however, we did some rough performance testing in order to
see where we are exactly, especially with respect to Eieio. Figure 1 on the
next page presents the timing results of five simple benchmarks (presented on
a logarithmic scale). These benchmarks are independent from each other and
shouldn’t be compared. They are presented in the same figure merely for the
sake of conciseness. The five benchmarks are as follows.

1. 1000 calls to defclass with two super-classes, each class having one slot.

2. 1000 calls to defgeneric followed by 3 method definitions.

3. 5,000 calls to make-instance initializing 3 slots by :initarg’s.
6 http://www.lrde.epita.fr/~didier/software/xemacs.php

D. Verna CLOX : Common Lisp Objects for XEmacs

77

Class def. Method def. Instantiation Slot Access Generic call

1s

10s

100s

EIEIO

CLoX (methods interpreted)

CLoX (methods byte-compiled)

Figure 1: CLOX vs. Eieio performance

4. 5,000 calls to 3 slot accessors as defined above.

5. 5,000 calls to a generic function executing 3 methods via 2 calls to
call-next-method.

These benchmarks have been executed in 3 situations each: once for Eieio, and
twice for CLOX, with method bodies and “upward funargs” either interpreted or
byte-compiled.

As expected, Eieio performs much faster than CLOX in general. Several speci-
ficities of these results can be analyzed as follows.

– Class, generic function and method creation are faster in Eieio by a factor
ranging from 7 to 23. This could be due to the fact that Eieio doesn’t
have a Mop, so these operations go through ordinary functions (classes are
implemented as vectors).

– When method bodies and other lambda expressions are byte-compiled, CLOX
performs the operations above between 2 and 3 times slower. This is precisely
because the results include the time used for byte-compilation.

– On the other hand, the situation is reversed for instantiation, slot access and

D. Verna CLOX : Common Lisp Objects for XEmacs

78

generic calls, as they involve executing byte-code instead of interpreting the
original Emacs Lisp code. Here, the gain is roughly a factor of 5.

– Finally, we can see that with method bodies byte-compiled (which is the case
in Eieio), instantiation in CLOX is roughly 10 times slower than in Eieio,
while slot-access and generic calls are about 5 times slower only. Given that
Eieio is already optimized and does not go through a Mop, these results
are better than what the author expected.

In order to improve the performance of CLOX in the future, several paths are
already envisioned.

– First, it is possible to implement a caching mechanism and memoize different
computation results within the Mop. The Amop even describes the exact
conditions under which a memoized value can be used at some places, for in-
stance in the specification for compute-discriminating-function (p. 175).

– Next, there is already abundant litterature on how to improve the efficiency
of Clos (see for example [Kiczales and Rodriguez Jr., 1990]). We can benefit
from that experience and also get inspiration from how modern Common
Lisp compilers optimize their own implementation.

– Finally, when the core of CLOX is moved to the C layer of XEmacs, an im-
portant immediate speedup is also expected.

5 Conclusion

In this paper, we described the early stages of development of CLOX, an attempt
at providing a full Clos implementation for XEmacs. Details on the porting of
Closette to Emacs Lisp have been provided, as well as some insight on type/class
integration and how CLOX compares to Eieio.

In this project, priority has been given to correctness over speed from the
very beginning, which lead us to port rt (a Common Lisp library for regression
testing) to Emacs Lisp, and also import an important part of Paul Dietz’s Gnu
Ansi Common Lisp test suite. This priority will not change until all the features
are implemented properly.

Ultimately, CLOX will need to be grounded at the C level, at least because
this is necessary for a proper integration of generic functions into the evaluator,
but also probably for performance reasons.

Once the system is fully operational, the author hopes to convince the other
XEmacs maintainers to actually use it in the core, hereby improving the existing
code in design, quality, and maintainability. Otherwise, the system will still be
useful for third-party package developers willing to use it.

D. Verna CLOX : Common Lisp Objects for XEmacs

79

References

[Apple, 2009] Apple (2009). The Objective-C 2.0 programming language.
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ObjC.pdf.

[Bobrow et al., 1988] Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E.,
Kiczales, G., and Moon, D. A. (1988). Common lisp object system specification.
ACM SIGPLAN Notices, 23(SI):1–142.

[C++, 1998] C++ (1998). International Standard: Programming Language – C++.
ISO/IEC 14882:1998(E).

[C, 1999] C (1999). International Standard: Programming Language – C. ISO/IEC
9899:1999(E).

[Cardelli, 1988] Cardelli, L. (1988). A semantics of multiple inheritance. Information
and Computation, 76(2/3):138–164. A revised version of the paper that appeared in
the 1984 Semantics of Data Types Symposium, LNCS 173, pages 51–66.

[Dietz, 2005] Dietz, P. (2005). The Gnu Ansi Common Lisp test suite. In Interna-
tional Lisp Conference, Stanford, CA, USA. ALU.

[Goldberg and Robson, 1983] Goldberg, A. and Robson, D. (1983). Smalltalk-80: the
language and its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[Houser and Kalter, 1992] Houser, C. and Kalter, S. D. (1992). Eoops: an object-
oriented programming system for emacs-lisp. SIGPLAN Lisp Pointers, V(3):25–33.

[Keene, 1989] Keene, S. E. (1989). Object-Oriented Programming in Common Lisp: a
Programmer’s Guide to Clos. Addison-Wesley.

[Kiczales et al., 1991] Kiczales, G. J., des Rivières, J., and Bobrow, D. G. (1991). The
Art of the Metaobject Protocol. MIT Press, Cambridge, MA.

[Kiczales and Rodriguez Jr., 1990] Kiczales, G. J. and Rodriguez Jr., L. H. (1990). Ef-
ficient method dispatch in pcl. In ACM Conference on Lisp and Functional Program-
ming, pages 99–105. Downloadable version at http://www2.parc.com/csl/groups/
sda/publications/papers/Kiczales-Andreas-PCL/.

[Moon, 1974] Moon, D. A. (1974). MacLISP Reference Manual. MIT, Cambridge,
Massachusetts.

[Paepcke, 1993] Paepcke, A. (1993). User-level language crafting – introducing the
Clos metaobject protocol. In Paepcke, A., editor, Object-Oriented Programming:
The CLOS Perspective, chapter 3, pages 65–99. MIT Press. Downloadable version at
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.

[Pitman, 1983] Pitman, K. M. (1983). The Revised MacLISP Manual. MIT, Cam-
bridge, Massachusetts.

[Ansi, 1994] Ansi (1994). American National Standard: Programming Language –
Common Lisp. ANSI X3.226:1994 (R1999).

[Waters, 1991] Waters, R. C. (1991). Some useful Lisp algorithms: Part 1. Technical
Report 91-04, Mitsubishi Electric Research Laboratories.

D. Verna CLOX : Common Lisp Objects for XEmacs

80

CLWEB

A literate programming system for Common Lisp

Alexander F. Plotnick
(Brandeis University, USA
plotnick@cs.brandeis.edu)

Abstract: CLWEB is a literate programming system for Common Lisp in the
tradition of WEB. It supports program reordering using named sections, code for-
matting with variable-width typefaces, interactive development, and automatic
indexing.
Key Words: literate programming, Common Lisp
Category: D.1, D.3, J.5

1 Introduction

Programming languages are fundamentally aimed at expressing algorithms to
two audiences: (1) the computer, via a compiler or interpreter, and (2) the human
programmer, whether author, maintainer, or reader. Literate programming is a
methodology that gives primacy to the human reader. A literate program reads
more like an essay than a program, introducing and using concepts in an order
that emphasizes human understanding, regardless of the syntactic constraints
of the programming language. It uses natural language to explain the purpose
and workings of the code, providing a “mixture of formal and informal methods
that nicely rëınforce each other” [9]. It is beautifully typeset, highly readable,
and fully indexed. It is still recognizably a computer program, but the primary
audience is no longer the machine.

Figure 1 shows an example of a small program written using CLWEB, a new
literate programming system for Common Lisp. The program is broken up into
numbered sections, each of which consists of two parts. First comes the commen-
tary part, written in English, followed by the code part, written in Lisp. (The
programmer does not specify the section numbers or cross-references; they are
automatically assigned by the system.)

Every section is either named or unnamed . A code part that begins with,
e.g., ‘〈Section name 〉 ≡’ indicates a definition of the section named ‘Section
name’. Named sections are essentially parameterless macros; prior to compila-
tion, the system replaces references like ‘〈Section name 〉’ with the code parts
of the sections so named. Multiple sections can share a name, which lets you
define a section piecemeal: the system appends together the code parts of all the
same-named sections and splices them into place when referenced.

81

1. Buffon’s needle. If a needle of unit length is thrown onto a
plane ruled with parallel lines spaced one unit apart, the probability of
the needle crossing a line is 2/π. Thus, if we simulate a large number of
throws, we can obtain an estimate of the value of π.

〈Return the current estimate of π 1 〉 ≡
(return (/ 2.0 (/ hits n)))

This code is used in section 2.

2. We’ll simulate the needle drop using two random variables: the
vertical distance c from the center of the needle to the nearest line below
the center, and the sine s of the angle θ ∈ [0, π) between the needle and
the lines.

(defun estimate-pi (&optional (throws 5000))
(loop for n below throws

and c = (random 1.0)
and s = 〈Compute the sine of a random angle 4 〉
count 〈Does the needle cross a line? 3 〉 into hits
finally 〈Return the current estimate of π 1 〉))

3. A needle of unit length at angle θ whose center is at y = c will have
its ends at y = c± (sin θ)/2. We just have to check if either end crosses
either of the lines y = 1 or y = 0.

〈Does the needle cross a line? 3 〉 ≡
(let ((sin/2 (/ s 2.0)))

(or (> (+ c sin/2) 1.0)
(≤ (− c sin/2) 0.0)))

This code is used in section 2.

4. Since we’re estimating the value of π, we can’t
just say (sin (random π))—that would be cheat-
ing. Instead, we pick a random point (dx, dy),
ensure that it lies in the upper half of the unit
circle, and use the definition sin θ = dy/r.

0 1−1

r

dx

dy

θ

〈Compute the sine of a random angle 4 〉 ≡
(loop for dx = (1− (random 2.0)) and dy = (random 1.0)

as r = (sqrt (+ (∗ dx dx) (∗ dy dy)))
until (< 0 r 1)
finally (return (/ dy r)))

This code is used in section 2.

Figure 1: A sample literate program.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

82

WEB

TEX DVI

LSP FAS

weave

tangle

TEX

compile

Figure 2: Operation of a literate programming system using Lisp and TEX.

The source file of a literate program, called a web, consists primarily of a
combination of two languages: a document formatting language for commentary,
and a programming language for code. In CLWEB, those languages are plain TEX
and Common Lisp, respectively. There’s also a third, much smaller language
of control codes used to delimit sections and their parts, to reference named
sections, &c. In CLWEB, these all start with ‘@x’, where x is a single character.
For example, §2 of the sample program was specified as:

@ We’ll simulate the needle drop using two random variables:

the vertical distance~c from the center of the needle to

the nearest line below the center, and the sine~s of the

angle~$\theta\in[0,\pi)$ between the needle and the lines.

@l

(defun estimate-pi (&optional (throws 5000))

(loop for n below throws

and c = (random 1.0)

and s = @<Compute the sine of a random angle@>

count @<Does the needle cross a line?@> into hits

finally @<Return the current estimate of π@>))

The section begins with the control code ‘@ ’ (space), followed by the commen-
tary. Then comes the code part, introduced with ‘@l’ (‘l’ for ‘Lisp’). (Had this
been a named section, the code part would have begun with, e.g., ‘@<Section
name@>=’ instead.) In the code, references to named sections are delimited by
the control codes ‘@<’ and ‘@>’.

There are two main operations that may be performed on a web (see Fig. 2).
Weaving prepares a literate program for reading by a human: it produces a
document like the one shown in Fig. 1, containing typeset commentary and code.
Tangling goes the other way: it strips out all the commentary, expands references
to named sections, and outputs a file ready for compilation. These two operations
lie at the heart of every literate programming system.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

83

2 Related Work

The first literate programming system was Don Knuth’s WEB [8], which used Pas-
cal and TEX as its programming language and document formatting language,
respectively. That system was used to implement TEX [10] and METAFONT [11],
which are probably the most widely used literate programs. Notable descendents
of WEB include Knuth and Levy’s CWEB [12], which used the C programming lan-
guage instead of Pascal, and FWEB [4], which added support for fortran.

All of those systems are (more or less) tied to particular pairs of languages.
Many of the newer literate programming systems, such as noweb [16], nuweb [5],
and FunnelWeb [21], are language-independent. These systems are usually much
simpler than their WEB-like cousins in both use and implementation, and they of-
fer obvious advantages for programmers who frequently switch languages and for
projects that employ multiple languages. However, their strength is also a weak-
ness: they cannot, in general, perform the language-specific tasks of automatic
code formatting and indexing.1

We’ll use the term code formatting to describe the process of generating
nicely typeset output from source code. (This is usually called pretty printing,
but using that terminology may cause confusion with the Common Lisp pretty
printer.) Code formatting can be as simple as reproducing the input source in
a monospaced font, or as complex as the transformations performed by, e.g.,
the ‘Fortify’ code formatter for Fortress [2], which produces highly mathemat-
ical syntax. The first alternative is by far the most common, since it requires
minimal effort; anything more sophisticated usually requires a full parser for the
programming language.

The other major language-specific task that a literate programming system
might perform is automatic indexing of program identifiers. A good index in-
cludes separate entries for each type of object named by a given identifier, and
indicates whether that object is being defined or just used in a given section.
Again, this task generally requires a full parser, but the value of such an index
cannot be overestimated, especially for a long program.

For literate programming in Lisp, the systems of choice have generally been
language-agnostic tools such as noweb. Systems like AXWEB [22] and LitLisp [13]
offer similar features, but happen to be implemented in Lisp. One interesting
exception is the Scribble documentation tool for PLT Scheme [6], which uses
that language’s powerful extension facilities to provide a documentation sys-
tem that is itself just another PLT Scheme language. Scribble therefore goes
even further than the WEB-like systems towards integrating documentation with
code, and provides an interesting model to consider for future work on literate
1 In fact, noweb can do code formatting and indexing through the use of ‘filters’—

external scripts invoked during weaving. Such filters are necessarily language-specific,
though, so the general point still holds.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

84

programming in other Lisp dialects, such as Common Lisp.
There have been many other literate programming systems, but more com-

mon are tools that we might call ‘semi-literate programming systems’—systems
that offer a weaver, but no tangler. Examples include JavaDoc, ‘Literate Haskell’,
Perl’s ‘Plain Old Documentation’ format, and LATEX’s doc package. The ratio-
nale usually given for the omission of a tangler is that modern programming
languages tend to have a less rigid syntax and offer more avenues for abstraction
than languages like Pascal and C. This is true, but not the whole story: named
sections offer an axis of abstraction that is in many ways orthogonal to the other
forms of abstraction provided by modern languages, and the ability to pull out
a chunk of code from an arbitrary place in a program and discuss it indepen-
dently is still valuable. Tangling also allows top-level forms to be reordered in
ways that may not be permitted by the underlying language. In Common Lisp,
for instance, defining macros such as defmacro, defvar , and defclass (among oth-
ers) “have compile-time side effects which affect how subsequent forms in the
same file are compiled” [3, §3.2.3.1.1 (emphasis added)]. Tangling allows users
to side-step such effects and present the program in whatever order they desire.

3 CLWEB

CLWEB falls squarely in the WEB family of literate programming systems. Its syn-
tax, command codes, feature set, and output style are based on those of WEB and
CWEB, so a user familiar with either of those systems should have little difficulty
adapting to CLWEB.

The implementation is a literate program, written using itself. At the time
of this writing, its woven output runs to some 85 pages, including a 4 page
index; the tangled source file is approximately 2,500 lines of Common Lisp.
It currently runs only under Allegro Common Lisp, Clozure Common Lisp,
and recent versions of SBCL (≥ 1.0.31), but ports to several other Common
Lisp implementations are planned. A β-quality release is freely available at
http://www.cs.brandeis.edu/∼plotnick/clweb/.

3.1 Differences from WEB

The differences between CLWEB and WEB are mostly ones of omission. For instance,
CLWEB does not support the ‘middle’ part of sections, used for macro definitions,
because macros are such an integral part of Common Lisp; it seemed best to
treat them like any other piece of Lisp code. It does not support change-files,
because the standard diff and patch tools serve the same purpose. It does not
support string pools, because the language has native support for strings.

CLWEB does not currently support writing specific sections to an arbitrary file
(although support for that feature is planned), but it does support a special kind

A. F. Plotni CLWEB: A literate programming system for Common Lisp

85

of section for tests. Test sections are just like ordinary sections—they may be
named or unnamed, and have the same two-part structure—but are tangled and
woven separately from the main program, so as not to clutter the compiled out-
put or disrupt the narrative flow of the woven document. The weaver generates
references from each test section to the regular section it followed, so it’s easy
to find the code being tested. It’s proven quite useful to specify tests alongside
the parts of the program being exercised, and to be able to thoroughly describe
what is being tested and why.

3.2 Interface

The interface to CLWEB was designed to feel quite a bit more ‘Lispy’ than the
batch-oriented WEB system. For example, in most literate programming systems,
the sequence of steps required to run a program is something like:

tangle → compile → run.

In CLWEB, there’s a single operation, tangle-file, that combines the first two steps;
it dumps the tangled code to a file using the printer, then invokes the file compiler
on that file. Another operation, load-web, is analogous to cl:load , but operates
on a web instead of a Lisp source file; it loops over all the forms in the tangled
code and evaluates each one in turn.

Also included with the distribution is a small Emacs Lisp library that pro-
vides a major mode for editing CLWEB programs which supports interactive, in-
cremental development with Inferior Lisp mode, eli, or slime. In addition to the
usual Lisp evaluation commands, CLWEB mode provides an eval-section command
that redefines the section at point; in case that section is named, an argument
controls whether the code for that section should be replaced or appended to (for
piecemeal definitions). Other features include syntax highlighting, commands to
move around by sections, and slime shortcuts for tangling and weaving the cur-
rent file.

At the current time, there is no support for helping the Lisp implementation
find definitions in the web source as opposed to the tangled file. This would be
nice to have, especially for compiler messages, but because there is no portable
way to label the provenance of forms in a file, any such future work will neces-
sarily be implementation-specific.

3.3 Reading

Early in the design of CLWEB, I decided to use the Common Lisp reader for
input. Two factors influenced this decision. The most important one was the
desire to preserve the flexibility of syntax that standard Common Lisp offers. A

A. F. Plotni CLWEB: A literate programming system for Common Lisp

86

secondary goal was to save a bit of effort by not implementing a full parser for
all of Common Lisp. As it turned out, neither goal was completely satisfied.

Essentially, the problem is that a system like CLWEB needs to deal not just
with Lisp forms as objects, but also with their representations in source code.
The Common Lisp reader is very good at dealing with the former, but simply
doesn’t provide access to the latter. For example, when the Lisp reader is given
the characters ‘#o177’, it returns the integer 127; the fact that it was originally
specified in octal is gone. But the weaver should preserve this kind of information,
along with other similar distinctions, like the use of nil vs. () and (quote foo)

vs. ’foo. Other pieces of Common Lisp syntax, like #+ and #−, backquote,
and #S , are important to preserve even during tangling: since these all read in
implementation-specific ways, another implementation might not even be able
to read the tangled output if we tried to näıvely dump out the objects returned
by the reader.

In order to preserve these distinctions and objects that the reader usually
discards, CLWEB overrides nearly all of the standard reader macro functions, pro-
viding routines that return “marker” objects that represent things like ‘rational
in radix r’ or ‘comment with text foo’. But while the tangler and weaver know
how to deal with these objects, user-supplied reader macro functions that ex-
pect Lisp forms might not work correctly. This is an open problem for future
work: what kind of interface can a system like CLWEB provide that preserves the
extensibility of the reader, while overriding most of the reader’s functionality?

3.4 Code Formatting

Like the other members of the WEB family, CLWEB formats code using a variable-
width typeface. Unlike those systems, however, CLWEB does not attempt to au-
tomatically break or indent lines of source code in the woven output.

The decision to omit automatic line breaking was driven by concern for the
user: most programmers simply don’t like having their lines broken except where
they break them [17]. CLWEB’s weaver therefore respects the line breaks given in
the input, and will never break a line of code on its own.

The lack of automatic indentation is purely pragmatic: it turns out to be ex-
tremely hard to correctly and automatically indent Common Lisp code. Whereas
block-structured languages have simple, fixed indentation rules, Lisp indentation
style is highly variable. While it’s true that the standard macros and special oper-
ators have well-established indentation conventions, user-defined macros might
have their own idiosyncratic conventions. Imagine, for instance, a string-case

macro, or a wrapper around defclass; one would presumably like these to be in-
dented like case and defclass, respectively, but there’s no way for a code format-
ting system to know that without manual annotation. Even with programmer-
supplied hints (e.g., the use of &body instead of &rest), there will always be

A. F. Plotni CLWEB: A literate programming system for Common Lisp

87

macros that require special-purpose indentation rules, the canonical example
being the “extended” loop form.

CLWEB chooses instead to rely on the author’s indentation, and to approximate
that in the woven output. If the output were set using a monospaced font, this
would be trivial: we would just need to preserve the whitespace used in the
input. But with a variable-width typeface, that approach won’t work. Consider
the following simple form:

(first second

third)

Without access to font metrics, the weaver can’t determine the width of the first
sub-form, and so it can’t produce the correct alignment.

Our solution is to record the starting column of each code form, and use that
information to construct a sequence of logical blocks—groups of forms that share
a common left margin. The weaver then prints the logical blocks using TEX’s
alignment tabs. The result is a variable-width approximation of the original
indentation (the TEX source is shown on the right):

(first second

third)

\+(first &second\cr

\+ &third)\cr

In this way, even the loop facility is handled correctly, with no special cases
required.

The CLWEB weaver also performs a few other minor code formatting tasks.
It sets keywords and lambda-list keywords in an italic typeface; it prints a few
symbols using special characters (e.g., it prints the symbols named ‘LAMBDA’
and ‘PI’ as ‘λ’ and ‘π’, respectively); it sets string literals in a monospaced font;
and it prints numbers that have a specified radix with that radix as a subscript
(e.g., ‘#o177’ is rendered as ‘1778’, as in some math textbooks).

The question of how much formatting is useful or desirable is an open one. For
example, one user of CLWEB asked if it would be reasonable to render ‘(aref a i)’
as ‘ai’. Fortress does this, but that language has it as an explicit goal to emulate
mathematical notation. CLWEB tries to keep Lisp code looking like Lisp, but offers
a few minor typographic cues where it seems appropriate. The code formatter
is implemented using the Common Lisp pretty printer, so if a user wants fancier
output, they’re free to add their own pretty printing functions.

3.5 Indexing

Figure 3 shows the index that CLWEB generated for the sample program in Fig. 1.
The indexer constructs entries for local and global functions, macros, and symbol
macros; special variables; constants; classes and condition classes; generic func-
tions; methods (with qualifiers); and setf functions and methods. It does not

A. F. Plotni CLWEB: A literate programming system for Common Lisp

88

c variable: 2, 3.

dx variable: 4.

dy variable: 4.

estimate-pi function: 2.

hits variable: 1, 2.

n variable: 1, 2.

r variable: 4.

s variable: 2, 3.

sin/2 variable: 3.

throws variable: 2.

Figure 3: The index for the program shown in Fig. 1. All references are to
section numbers; an underlined locator indicates definition in the given section.

usually index lexical variables, on the presumption that they would needlessly
bulk up the index, but will do so if a certain global flag is set to true, as it was
for the example above.

The usual way of generating an index or cross-reference database for Lisp is
to use a code walker. This is a tool that knows how each of the 25 special op-
erators of Common Lisp affects the lexical environment of its sub-forms. Given
a form and a lexical environment object,2 a code walker macroexpands until
it reaches a special form, then recursively walks each sub-form with an appro-
priately augmented lexical environment object. The walker generally runs some
user-supplied code at each stage of the walk, passing the form being walked and
some sort of context, including the current lexical environment.

The basic problem with indexing a web is that the code parts aren’t quite
Common Lisp: they’re fragments of Common Lisp that might contain named
section references. You can’t walk these with a code walker, because the walker
needs to perform macroexpansion, which could break in the presence of named
section references. The näıve solution is to tangle the web first, then walk the
tangled code. This would be fine from the point of view of the walker, but would
defeat the entire purpose of walking the forms in the first place: remember, the
idea is to generate a mapping of objects named by symbols or function names to
the sections in which references to those objects occur—that’s what an index is.
But if we tangle before walking, we’d lose the provenance of those occurrences;
we’d know that some object was being referenced, but we wouldn’t know where.
2 Unfortunately, although Common Lisp mandates the existence of environment ob-

jects, it does not supply a standard way of either examining or augmenting them.
An api for doing so was proposed in cltl-2 [19], but was ultimately rejected by the
X3J13 committee. Nevertheless, that api is relatively widely supported, and so it is
used for CLWEB’s code walker. It’s the one non-standard dependency in CLWEB.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

89

The solution used in CLWEB is slightly tricky, and more than a little smarmy.
Before we walk, we do a special sort of tangling that not only expands named
section references, but also replaces every symbol in each section with what we
call a referring symbol . This is an uninterned symbol whose value cell contains
the symbol it replaced, and which has a property set on its plist that contains
the section in which the original symbol occurred. Then, as we do the code walk,
we use these referring symbols to build the index, and swap them back out for
their referents to preserve the semantics of the original code for the next stage
of the walk.

This trick does have one flaw, which is that macros that depend on symbol
identity may not be expanded correctly during the walk, because they’ll see the
referring symbols instead of whatever they might be expecting. But since the
walk is only done to build the index, unless such a macro signaled an error for
some reason, the worst that could happen is that the index might not be as
complete as it should be. In practice, this has not been a problem.

CLWEB provides its own code walker, as none of the freely available ones were
found to be suitable. The design of the walker comes from Richard Waters’s
macroexpand-all [20], but it’s written in a more modern style, making heavy use
of clos; the indexer proper is just a subclass of the walker with some specialized
methods, which makes extending it relatively straightforward.

4 Conclusion

Having described literate programming in general and CLWEB in particular, we
should perhaps pause for a moment and ask the question, “Do we really need
literate programming in Common Lisp?” As Lisp programmers, we are used to
working with a highly expressive language that already has many avenues for
syntactic and semantic abstraction. Do we need more?

I think that we do. As elegant and expressive as Lisp is, a complex pro-
gram still requires a guide. Think, for example, of the first part of The Art of
the Metaobject Protocol [7]. This contains a nearly complete implementation of
a small, clos-like language, thoroughly and elegantly described. With a tiny
amount of extra work, that could have been recast as a literate program, elim-
inating the need for a separately-maintained implementation. Indeed, many of
the best textbooks (e.g., [1, 14, 15]) present programs in exactly the style of
a well-written literate program: broken up into small, manageable pieces that
are completely documented. We don’t need to struggle to understand these pro-
grams, since our comprehension was the principle guiding the presentation.

Literate programming is, I believe, uniquely suited to creating complex pro-
grams that exemplify such excellence of style and documentation. I hope that
CLWEB will be a useful tool for those who seek to produce such programs.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

90

References

1. Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, second edition, 1996.

2. Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steel, Jr., and Sam Tobin-Hochstadt. The Fortress lan-
guage specification, March 2008.

3. American National Standards Institute. Committee X3, Information Process-
ing Systems and Computer and Business Equipment Manufacturers Association.
Draft proposed American national standard programming language Common LISP.
X3.226:199x. Draft 14.10, X3J13/93-102. Global Engineering Documents, Wash-
ington, DC, USA, January 1994.

4. Adrian Avenarius and Siegfried Oppermann. FWEB: A literate programming system
for Fortran 8X. ACM SIGPLAN Notices, 25(1):52–58, January 1990.

5. Preston Briggs. Nuweb, A simple literate programming tool. cs.rice.edu:
/public/preston, Rice University, Houston, TX, USA, 1993.

6. Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: closing the book
on ad hoc documentation tools. SIGPLAN Notices, 44:109–120, August 2009.

7. Gregor Kiczales and Jim des Rivieres. The art of the metaobject protocol. MIT
Press, Cambridge, MA, USA, 1991.

8. Donald E. Knuth. The WEB system of structured documentation. Stanford Com-
puter Science Report CS980, Stanford University, Stanford, CA, September 1983.

9. Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,
May 1984.

10. Donald E. Knuth. TEX: The Program, volume B of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

11. Donald E. Knuth. METAFONT: The Program, volume D of Computers &Typeset-
ting. Addison-Wesley, Reading, MA, USA, 1986.

12. Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion, Version 3.0. Addison-Wesley, Reading, MA, USA, 1993.

13. Drew McDermott. Litlisp, a literate-programming system based on ‘txtlisp’, 2006.
14. Peter Norvig. Paradigms of artificial intelligence programming: case studies in

Common Lisp. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 2004.
15. Christian Queinnec. LISP in small pieces. Cambridge University Press, Cam-

bridge, UK, 1996.
16. Norman Ramsey. Literate programming tools need not be complex. Technical

report CS-TR-351-91, Princeton University, Dept. of Computer Science, Princeton,
NJ, USA, October 1991.

17. Norman Ramsey and Carla Marceau. Literate programming on a team project.
Technical report CS-TR-302-91, Princeton University, Dept. of Computer Science,
Princeton, NJ, USA, February 1991. Published in [18].

18. Norman Ramsey and Carla Marceau. Literate programming on a team project.
Software—Practice and Experience, 21(7):677–683, July 1991.

19. Guy L. Steele, Jr. COMMON LISP: the language. Digital Press, 12 Crosby Drive,
Bedford, MA 01730, USA, second edition, 1990. With contributions by Scott E.
Fahlman and others, and with contributions to the second edition by Daniel G.
Bobrow and others.

20. Richard C. Waters. Macroexpand-all: an example of a simple lisp code walker.
SIGPLAN Lisp Pointers, VI(1):25–32, 1993.

21. Ross Williams. FunnelWeb user’s manual. ftp.adelaide.edu.au in /pub/
compression and /pub/funnelweb, University of Adelaide, Adelaide, South Aus-
tralia, Australia, 1992.

22. Stephen Wilson. AXWEB – a literate programming tool implemented in Common
Lisp, July 2007.

A. F. Plotni CLWEB: A literate programming system for Common Lisp

91

Colophon
e papers collected here were formaed according to the style guidelines for the Jour-
nal of Universal Computer Science (those using LTEX using the jucs2e.sty style file).
ese proceedings were typeset using XƎLTEX, including the typeset papers using the pdf-
pages paage. e typefaces used for this collection are the Linux Libertine and Linux
Biolinum typefaces from the Libertine Open Fonts Project, and the Computer Modern
Teletype typeface originally designed by Donald Knuth. e front cover image is a
photograph of the Padrão dos Descobrimentos (Monument to the Portugese Discoveries)
by Georges Jansoone, modified by Edgar Gonçalves, and used here under the terms of
the Creative Commons Aribution 2.5 Generic copyright licence.

92

	Acknowledgments
	Messages from the chairs
	Going Meta: Reflections on Lisp, Past and Future
	Reading the News with Common Lisp
	Tutorial: Parallel Programming in Common Lisp
	Lots of Languages, Tons of Types
	Verifying monadic second order graph properties with tree automata
	A DSEL for Computational Category Theory
	Marrying Common Lisp to Java, and Their Offspring
	Tutorial: Computer Vision with Allegro Common Lisp and VIGRACL
	CLOX: Common Lisp Objects for XEmacs
	CLWEB: A literate programming system for Common Lisp

