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Preface

Message from the Programme Chair

Welcome to ELS 2011, the 4th European Lisp Symposium.

In the recent years, all major academic events have suffered from a decreasing level of atten-
dance and contribution, Lisp being no exception to the rule. Organizing ELS 2011 in this context
was hence a challenge of its own, and I’m particularly happy that we have succeeded again.

For the first time this year, we had a “special focus” on parallelism and efficiency, all very im-
portant matters for our community with the advent of multi-core programming. It appears that
this calling has been largely heard, as half of the submissions were along these lines. Another
notable aspect of this year’s occurrence is the fact that four dialects of Lisp are represented:
Common Lisp, Scheme, Racket and Clojure. This indicates that ELS is successful in attempting
to gather all crowds around Lisp “the idea” rather than around Lisp “one particular language”.
The European Lisp Symposium is also more European than ever, and in fact, more international
than ever, with people coming not only from western Europe and the U.S.A., but also from such
countries as Croatia and Bulgaria.

While attending the symposium is just seeing the tip of the iceberg, a lot have happened under-
water. First of all, ELS 2011 would not have been possible without the submissions we got from
the authors and the careful reviews provided by the programme committee members; I wish to
thank them for that. I am also indebted to the keynote speakers who have agreed to come and
spread the good word. I wish to express my utmost gratitude to our sponsors who contributed
to making the event quite affordable this year again. Ralf Möller was our local chair, the “Grey
Eminence” of the symposium, and we owe him a lot. Finally, my thanks go to Edgar Gonçalves
for taking care of the website with such reactivity and attentiveness.

I wish you all a great symposium!

Message from the Local Chair

Welcome to Hamburg University of Technology (TUHH). We hope you will enjoy your stay
at our university for the 2011 European Lisp Symposium. Not only interesting presentations
will be part of the programme, but also social events such as the the social dinner at the Feuer-
schiff (http://www.das-feuerschiff.de) and the Welcome Reception at Freiheit (http:
//www.freiheit.com). We would like to thank all sponsors for making the event possible.
For those of you staying over the weekend, a tour to Miniatur-Wunderland (http://www.
miniatur-wunderland.de) will be offered.

Yours sincerely,

Ralf Möller
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TUHH (http://www.tuhh.de) is a competitive entrepreneurial university focussing on high-
level performance and high quality standards. TUHH is dedicated to the principles of Hum-
boldt (unity of research and education). TUHH has a strong international orientation and also
focusses on its local environment. It contributes to the development of the technological and
scientific competence of society, aiming at excellency at the national and international level in
its strategic research fields, and educating young scientists and engineers within demanding
programmes using advanced teaching methods.

Let’s not forget Hamburg, for why are we all here? People say Hamburg is Germany’s most at-
tractive city combining urbane sophistication, maritime flair, the open-mindedness of a metropo-
lis, and high recreational value. The second-largest city in Germany, it has traditionally been
seen as a gateway to the world. Its port is not only the largest seaport in Germany and the
second-largest in Europe, but a residential neighborhood with leisure, recreational and educa-
tional facilities. Hamburg is a very special place.
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Invited Talks

Compiling for the Common Case

Craig Zilles, University of Illinois, USA
Microprocessor vendors are actively exploring mechanisms that offer the potential to reduce the
effort to produce parallel code. One such mechanism, is the ability to atomically execute code
which is useful for accelerating critical sections, lock-free data structures, and for implement-
ing transactional memory. With 3 prior implementations (Transmeta’s Crusoe, Azul’s Vega,
and Sun’s Rock) this mechanism has a lot of potential to be ubiquitous in the next decade. In
this talk, I’ll discuss how this mechanism can be re-purposed to provide very efficient user-
mode checkpoint/rollback, allowing a compiler to generate "speculative" versions of code that
support only the expected case. I’ll detail our experiences exploring compiling in such an en-
vironment in the context of an x86 binary translator, a Java virtual machine, and the Python
dynamic language.

Reconfigurable Computing on Steroids

Marc Battyani, NovaSparks
General purpose CPUs have been hitting the frequency wall but as the number of transistors in
electronic chips continues to steadily increase, there is a tremendous need for other computing
paradigms. One of them is the use of reconfigurable hardware (FPGA) to accelerate specific
kinds of computations. Even though the performance gain can be huge, FPGAs are notori-
ously very difficult to program, which has been one of the major drawbacks in their adoption.
There have been several attempts to solve this problem using C to VHDL/Verilog compilers.
Though this can be useful at times, our opinion is that it is not a good approach. In this talk,
we will explain how and why we use domain specific languages that enable us to generate high
performance Domain Specific Hardware optimized for the final tasks being implemented. We
will also present our experience at NovaSparks where we have been using Common Lisp to
successfully define and implement those DSL->DSH compilers in financial applications since
2007.

Scala: an Object-Oriented Surprise

Apostolos Syropoulos
Scala is an Object Oriented language that was released in 2003. The distinguished features of
Scala include a seamless integration of functional programming features into an otherwise OO
language. Scala owes its name to its ability to scale, that is, it is a language that can grow
by providing an infrastructure that allows the introduction of new constructs and data types.
Scala is a compiled language. Its compiler produces bytecode for the Java Virtual Machine,
thus, allowing the (almost) seamless use of Java tools and constructs from within Scala. Most
importantly, Scala is a concurrent programming language, thus, it is a tool for today as well as
tomorrow.
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Supercomputing in Lisp
Porting SBCL to IBM Blue Gene/P

Valentin Pavlov
Rila Solutions EAD
vpavlov@rila.bg

Abstract
This paper describes the technical details of the process of porting
SBCL (Steel Bank Common Lisp) to IBM Blue Gene/P, making
it the first Lisp implementation to run on a modern (circa 2010)
peta-scale supercomputing platform. We also discuss current lim-
itations of the port and outline some of the future work needed in
order to make Lisp an attractive choice for peta-scale application
development.

Categories and Subject DescriptorsC.5.1 [Computer Systems
Implementation]: Large and Medium (”Mainframe”) Computers—
Super (very large) computers; D.3.4 [Programming Languages]:
Processors—Run-time environments

General Terms Languages

Keywords Blue Gene/P, supercomputing, Lisp, SBCL

1. Introduction
For several decades now the research community has been rely-
ing on scientific packages written over the years in FORTRAN,
C and C++. Most of these are easily ported to modern supercom-
puting systems, which provide cross-compilers and standard, well-
established mechanisms for IPC (usually MPI and OpenMP). How-
ever, high-level abstraction languages – as Lisp – are virtually non-
existent in the supercomputing domain. The reasons for this are no
different than the reasons why we don’t see Lisp in mainstream
software development – mostly historical and most of them wrong.
In our opinion, if we want to move forward and start creating bet-
ter parallel applications, we have to look into high-level abstrac-
tions languages. Solid parallel Lisp development and runtime en-
vironments would help future researchers to focus at the problem
at hand and step away from tedious low-level infrastructural de-
tails. The dynamic nature of Lisp seems very relevant for creating
self-adapting, smart and scalable applications that are needed at the
peta-scale performance level. At the same time, binding to native
libraries will guarantee efficient execution of critical calculations
for which robust and proven mathematical packages exist.

The project described in this paper is an attempt to bring Lisp to
the modern supercomputing stage. A supercomputing Lisp runtime
environment is absolutely necessary in order to make people start

considering Lisp as a feasible language for parallel application de-
velopment. The lack of such runtime environment would mean that
their code will only run on small-to-medium cluster installations,
which would make it inferior to an application written in C/C++ or
FORTRAN. To the best of our knowledge, such environment did
not exist, at least not one suitable for supercomputers that are in
circulation these years.

With this in mind, the main goal of the project (and the paper) is
to act as enabler and to show that such environment can be build
and in fact exists. Even though the majority of the developers might
not have access to supercomputers, just the knowledge that their
program can be made to run on one can provide them with enough
confidence in order to start writing their next parallel program in
Lisp. This put Lisp on equal footing with C/C++ and FORTRAN,
at least in regards with the availability of the language for peta-scale
development.

One of the planned uses for this environment is to run the
Quantum Computing simulator application described in [14], but
this is by far a lesser goal. Since Lisp is a general programming
language, there is no limit for the practical usefulness of such
environment. The domain of possible applications is not restricted
in any way.

The rest of the paper is organized as follows: Section 2 intro-
duces some aspects of the the target system organization that are
relevant to the discussions that follow. Section 3 describes the pro-
cess of porting SBCL to IBM BlueGene/P. Section 4 describes the
current status of the port and provides a list of known limitations.
Section 5 outlines directions for future work in regards with the port
and also in regards to general parallel Lisp programming. Section 6
gives a brief overview of related work and Section 7 concludes the
paper.

2. Target system organization
The IBM Blue Gene/P supercomputer is a massively parallel dis-
tributed memory system that supercedes the company’s previous
line of supercomputers, BlueGene/L [12]. It is designed to reach a
maximum theoretical performance of 1 PFLOPS, utilizing 294,912
PowerPC cores @ 850 MHz with 144 TB of RAM. We will now
briefly describe some system details that are relevant to our discus-
sion.

2.1 Front-end Node

The Front-end Node (FEN) is the system’s main entry point. This
is where its users login, prepare their work, submit their jobs and
receive their results. This is a 4-CPU 2GHz POWER5+ machine
running a ppc64 SuSE Linux Enterprise Server 10 operating sys-
tem. Apart from the software packages found in the regular SLES
10 distribution, the machine also includes:
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• a cross-compiling GCC 4.1.2 toolchain that targets the comput-
ing nodes. C, C++ and FORTRAN compilers are available;

• a cross-compiling GCC 4.3.2 toolchain that supports OpenMP
(experimental);

• the IBM XL suite of compilers for C, C++ and FORTRAN.
Two sets of compilers are provided – one that produces code to
be run on the FEN, and another that is cross-compiling for the
computing nodes. The XL compilers also support OpenMP;

• Argonne National Laboratory’s MPICH2 [4] implementation of
the MPI standard, cross-compiled and ready to be used by the
applications running on the computing nodes;

• TWS LoadLeveler – the resource scheduler that organizes job
submission, queuing and execution;

2.2 Compute Nodes

The Compute Nodes (CN), as their name suggest, provide the main
computing power of the system. Each CN has 4 PowerPC 450 cores
@ 850 MHz and 2 GB RAM1. Each core has 2 FPUs (double hum-
mer), and each FPU is capable of processing 2 instructions per cy-
cle. This amounts to a theoretical performance of 13.6 GFLOPS
per CN. It should be noted however, that only the IBM XL com-
pilers know about the double hummer – the GCC toolchain cannot
produce code that utilizes the two FPUs.

Each CN features several networks through which it is directly
connected to its immediate neighbors, forming a large 3D cube
of interconnected CNs. 1024 CNs are bundled in a rack, and a
particular installation may be as small as 1 rack and as big as 72
racks. The total combined power of all CNs in the latter case is
979.2 TFLOPS, or almost 1 PFLOPS.

The CNs are booted on demand. During job startup, a partition
with the required size is allocated and all CNs in it start booting a
custom, IBM-proprietary kernel, called CNK (Compute Node Ker-
nel). CNK provides a single-process environment – only a single
application process runs on top of it; luckily, dynamic loading of
shared libraries is supported. When all CNs in the partition boot,
they start to execute the program in parallel, all using the same ex-
ecutable image.

From the application’s point of view, CNK behaves more or less
like a regular Linux kernel. That is, CNK exports a large subset
of the syscalls found in Linux. However, some of the syscalls and
libc functions are not supported. One such example isfork, which
contradicts to the single-process nature of the CNK.

A job can be run in 3 different modes:

• VN mode – each core runs its own process and has direct access
to 512 MB RAM;

• DUAL mode – each couple of cores on a CN share an appli-
cation image and have access to 1 GB RAM. The application
process may have 2 parallel threads of execution in a shared-
memory environment.

• SMP mode – all 4 cores on a CN share a single application
image and have to the whole 2GB RAM on the node. The
application process may have 4 threads.

Single-threaded applications should be run in VN mode, oth-
erwise half or even three-quarters of the processing power will be
wasted. This reduces the amount of memory directly available to
single-threaded applications to 512 MB per process.

2.3 I/O Nodes

The I/O nodes (ION) are the interfaces through which the compute
nodes interact with the rest of the system and the world. They are

1 There are also configurations with 4GB RAM per computing node

connected to a 10 Gbit/s switch that also connects the Front-end
Node, File Servers and all the rest of the system.

The IONs boot a Linux-based OS. It uses network file system
drivers (NFS, GPFS) to connect to any file servers. An important
piece of software – the Console I/O Daemon (CIOD) – acts as a
proxy between the compute nodes and rest of the world. All input
and output operations issued on a CN eventually end up carried out
by one of the IONs. This includes File I/O, stdin, stdout, stderr,
networking, etc.

The proxying is transparent for the application, but ultimately
it involves communication between the kernel of the computing
node and the corresponding CIOD, using an in-house protocol. As
discussed later, this has some implications, one of them being the
fact that stdin does not support non-blocking reads.

2.4 Other components and features

Other components The system also includes other components
like: the Service Node, through which the actual monitoring and
control of the bare metal is done; a storage sub-system that com-
prises several file servers plus a centralized storage device; and
some networking infrastructure that connects all this to the Inter-
net. These however don’t play any important role in the porting
process and will not be discussed in detail. Interested readers are
advised to review [11] and [17].

HPC vs. HTC A computing node block can be booted in one
of two possible modes: HPC (High-Performance Computing), in
which all the CNs in the block start the same process and work co-
operatively using MPI; and HTC (High-Throughput Computing),
in which the CNs in the block may run different processes and MPI
is not available.

CNK Source Code Argonne National Laboratory and IBM spon-
sored the BG/P open source project [1], which provides access to
the source code of all necessary components. This turned out to be
very helpful during the port process.

3. Lisp for the CNK
In order to make use of the huge processing power of the supercom-
puting system, we would need a Lisp implementation that executes
on the compute nodes under the control of the CNK. The follow-
ing sub-sections describe the steps we followed, the difficulties we
have experienced and the workarounds that we came up with, in
order to make this possible.

3.1 Implementation of choice

The most important criteria for choosing the implementation of
choice were: 1) the availability of a Linux/PPC port which to use as
a stepping stone; 2) native code compilation and 3) personal famil-
iarity with the implementation. The native code compilation was
required in order to silence the opponents of the project, whose
main concern is that running an interpreted environment on a su-
percomputer will be an awful waste of resources. Obviously the
other two criteria were required in order to reuse as much knowl-
edge as possible and to complete the project in feasible time.

SBCL [5] fits the above requirements and thus it was chosen
to be the implementation of choice. Undoubtfully, there are many
other implementations for which a porting attempt could be made
in the future.

An excellent reading material regarding the SBCL build system
intricates is to be found in [15]. Readers who seek to obtain in-
depth understanding of what follows might want to read this article,
the SBCL user manual [7] and the SBCL Internals wiki [8]

Having in mind the system’s organization, the first thing that
becomes obvious is that we will be working in a multi-homed
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environment: first, we will need a Lisp that runs on the FEN, which
we will use as a cross-compiler in order to produce a Lisp that runs
on the CNs. Although both the front-end and the computing nodes
are PowerPC-based, these actually have different architectures: the
FEN is 64-bit platform and the CNs are 32-bit. There is also a
difference in the instruction sets between the POWER5+ CPU of
the FEN and the PowerPC 450 on the computing node. In general,
a program compiled for the FEN will not run on the CN and vice
versa.

3.2 Compiling for the FEN

As expected, compiling for the FEN turned out to be absolutely
straightforward – we just got the latest Linux/PPC binary from
SBCL’s web site, installed it on the FEN, then grabbed the latest
SBCL source code and built it. The new installation would become
theSBCL XC HOST for building the CNK target.

3.3 Tweaking the build system

It is desirable to be able to build both targets from a single source
code tree, so we needed a way to tell the build system which target
we want. We decided to use an environment variable,BGPCNK, for
that:

~/sbcl-1.0.46> sh make.sh # FEN build
~/sbcl-1.0.46> BGPCNK=1 sh make.sh # CN build

Inside the shell scripts that make up the build system, we use this
variable to control certain aspects of the build, so as to produce one
target or the other. Here is an example frommake-config.sh2:

if [ $BGPCNK = 1 ]; then
printf ’ :bgpcnk’ >> $ltf

fi

This particular code leads to the insertion of the keyword
:bgpcnk into local-target-features.lisp-expr, which in
turn will allow the cross-compiler to understand that it is com-
piling for the CNK. This will later get automatically included in
*features*, so we will know we are running on the CNK. The
presence or absence of other local target features is controlled in
a similar fashion. For example, due to reasons explained later, the
generational garbage collector cannot be used for the CNK build,
so in that case it is excluded from the features.

Another thing that the build system does is to select which
configuration file to use for building the C runtime and create a
soft link to it. Again, this is controlled by theBGPCNK variable:

if [ $BGPCNK = 1 ]; then
link_or_copy Config.ppc-linux-bgpcnk Config

else
link_or_copy Config.$sbcl_arch-linux Config

fi

TheConfig.ppc-linux-bgpcnk file is based on the standard
Linux/PPC config, but declares that the cross-compiler shall be
used when compiling the C runtime.

Setting:bgpcnk in the local target features also leads to the
definition ofLISP FEATURE BGPCNK during the genesis phase, so
when the time comes for compiling the C runtime, we will have
this symbol defined and conditional compilation can be based on
it.

With these changes the stage is set and with issuing
BGPCNK=1 sh make.sh we started the CNK build process. It
progressed fine through themake-host-1, make-target-1 and

2 Source code exempts are provided for illustration purposes only; they are
modified to make them less verbose and fit the paper margins.

make-host-2 stages, all of which are done on the FEN. The next
stage,make-target-2, starts the newly build C runtime on the
CNK, using the automatic HTC submission mode. This is where
the real problems start.

3.4 mmap problems

The first problem was related with some peculiarities of themmap
syscall implementation in the CNK. SBCL uses a hard-coded
configuration of the places where its memory segments should
be (src/compiler/ppc/params.lisp). When the runtime al-
locates the segments, it passes their locations as address hints
to the correspondingmmap calls. Here’s the relevant source code
(src/runtime/linux-os.c):

os_vm_address_t
os_validate(os_vm_address_t addr,

os_vm_size_t len)
{

int flags = MAP_PRIVATE | MAP_ANONYMOUS |
MAP_NORESERVE;

os_vm_address_t actual;
...
actual = mmap(addr, len, OS_VM_PROT_ALL,

flags, -1, 0);
...
if (addr && (addr!=actual)) {

fprintf(stderr,
"mmap: wanted %lu bytes at %p,
actually mapped at %p\n",
(unsigned long) len, addr,
actual);

return 0;
}
...
return actual;

}

It turned out that CNK also requiresMAP FIXED, but only in
caseaddr is notNULL. This was easily fixed by adding this before
themmap call:

#ifdef LISP_FEATURE_BGPCNK
if(addr) {

flags |= MAP_FIXED;
}

#endif

However, even withMAP FIXED, CNK treatsaddr only as a hint
and it will always use the lowest free address. Thus, it took quite
some time to find the right values to put inparams.lisp, having
in mind that any experiment required compilation for about 20-40
minutes. Eventually we figured out the right values and that took
care of themmap problems. The runtime started loading the core
and then it hanged indefinitely at some unknown place.

3.5 context hunting

After an unrecorded number of remote debugging sessions, it
turned out that the hanging occurs during an allocation trap. When
SBCL needs to allocate memory for a Lisp object, it goes like this:
if there is enough free space in the dynamic memory segment, it
chops a piece from there; otherwise, it uses a trap instruction to
issue a SIGTRAP, which is caught by a signal handler in the C
runtime. The signal handler enlarges the dynamic memory seg-
ment and jumps 4 instructions after the original trap instruction.
The Lisp portion of this mechanism is in theallocation macro
in src/compiler/ppc/macros.lisp:
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(inst add ,result-tn ,result-tn ,temp-tn)

;; result-tn points to the new end of the region.
;; Did we go past the actual end of the region?
;; If so, we need a full alloc.

(inst tw :lge ,result-tn ,flag-tn) ; ----> to C

;; These 3 instructions (lr is 2) execute
;; when the trap is NOT fired
(inst lr ,flag-tn (make-fixup

"boxed_region" :foreign))
(inst stw ,result-tn ,flag-tn 0)

;; Should the allocation trap above have fired,
;; the runtime arranges for execution to resume
;; here

;; from C <----

(inst sub ,result-tn ,result-tn ,temp-tn)

We managed to isolate the place where the hanging occurs, and
that is thetw :lge instruction that fires the SIGTRAP. Moreover,
we found out that the signal handler does get invoked, but some-
thing goes wrong in the return sequence.

The signal handler relies on the signal context in order to find
the address of the trapping instruction. This is the value of the
Program Counter (PC) register from the context. It then uses this
address to figure out the cause of the trap and to get the size of the
required allocation from the parameters of the previous instruction.
When everything is done, it increments the PC in the signal context
with 4 instructions, setting up the proper return address. Relevant
code insrc/runtime/ppc-arch.c is:

static void
sigtrap_handler(int signal, siginfo_t *siginfo,

os_context_t *context)
{

unsigned int code;

code=*((u32 *)(*os_context_pc_addr(context)));
...
if (allocation_trap_p(context)) {

handle_allocation_trap(context);
return;

}
...

}

void
handle_allocation_trap(os_context_t * context)
{
...
(*os_context_pc_addr(context)) = pc + 4; // !!!

}

Our experiments showed that the reason for hanging was that
upon return from the signal handler, the PC wasnot updated. This
led to the execution of the same trap instruction, the same signal
handler and so onad infinitum. How was that possible? By single
stepping we clearly saw that the context was updated right at the
end of the signal handler. So something wrong was happening in
the gray area between the end of the signal handler and the signal
comeback. Unfortunately this gray area is in CNK, which is in
privileged memory and thus cannot be single stepped.

This was very frustrating and almost became a show stopper.
We had to reverse engineer the CNK, which was not possible not
because of technical, but due to legal reasons. Fortunately, then
we came upon the BG/P Open Source project [1], and suddenly
everything became clear.

In the primordial signal handler, the CNK creates a copy of the
original signal context and it is this copy that gets passed to the
user-space signal handler. Then, insigreturn, the CNK does not
even look at the context that was passed to the user-space handler;
it just restores the state using the original one. We were not working
with the real thing, just with a mere shadow of it. We immediately
dubbed the One True contextAmber, after Zelazny’s marvelous
novel [20].

All this happens on the stack, and Amber was located further
down relative to the address of our context. To make matters worse,
due to reasons related with cache lineup this relative offset was not
constant.

The first thing we now needed to do is to find Amber. By looking
at the CNK source code we figured out where to find it – 2K after
the end of our context – and we know that the cache lineup may
introduce additional 0 to 7 words. We know what it should contain,
and that is an exact copy of the 32 general purpose registers, whose
values we have from our context. Thus, the function looks like this:

#ifdef LISP_FEATURE_BGPCNK
void *find_amber(os_context_t *context)
{

// Amber is @ 2K after the end of
// our copy (sizeof(mcontext_t) + 2K)
int offset = 0x4a0 + 0x800;

void *ptr1 = context->uc_mcontext.uc_regs->
gregs;

void *ptr2 = ((void *)context) + offset;
int sz = 128; // NUM_GPRS * sizeof(uint32_t)
int i;

for(i=0;i<8;i++) {
if(!memcmp(ptr1, ptr2 + i*4, sz)) {

return ptr2 + i*4;
}

}
lose("find_amber: something’s wrong");

}
#endif

We can use this function at the beginning of all signal handlers
in order to find the address of the real context. However, we cannot
work with this address directly, since the real context does not
adhere to themcontext t structure. Thus, we decided to proceed
as follows: at the beginning of the signal handler, we find the
address of Amber and store it; then after the end of the signal
handler, we copy the contents of the false context into Amber:

#ifdef LISP_FEATURE_BGPCNK
void moveto_amber(void *amber,

os_context_t *context)
{

// 32 GPRs
void *where = amber;
memcpy(where,

os_context_register_addr(context, 0),
128);

// FPSCR
where += 640;
memcpy(where,
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&(context->uc_mcontext.uc_regs->
fpregs.fpscr),

sizeof(double));

// PC
where += sizeof(double);
memcpy(where, os_context_pc_addr(context), 4);

// LR
where += 12;
memcpy(where, os_context_lr_addr(context), 4);

}
#endif

Now the only thing that remains is to wrap all signal handlers in
a kind of:around functions, like this:

#ifdef LISP_FEATURE_BGPCNK
static void
sigtrap_handler_bgpcnk(int signal,

siginfo_t *siginfo,
os_context_t *context)

{
void *amber = find_amber(context);
sigtrap_handler(signal, siginfo, context);
moveto_amber(amber, context);

}
#endif

This solved the problem. The runtime loadedcold-sbcl.core
and started to execute it, and all was OK until the first garbage
collection occurred.

3.6 mprotect and munmap misbehavior

SBCL’s garbage collection (GC) comes in two flavors: the original
Cheney GC and a newer, Generational Conservative GC (gencgc).
The default mechanism for the Linux/PPC architecture is gencgc,
which is superior in performance. Since we were basing the CNK
build on the Linux/PPC architecture, this was our default choice,
too.

It is beyond the scope of this article to explain how garbage
collection works. A proper treatment of the subject appears in [19].
Here we will only give a brief description of some of the ideas that
will support the understanding of the problems encountered.

gencgc is based on the empirical observation that the most re-
cently created objects are the ones that are most likely to become
unreferenced quickly. The longer an object survived, the larger the
probability for it to survive a little bit more. This hypothesis reflects
the largely stack-based organization of modern computing. In order
to benefit from this observation, gencgc divides objects intogenera-
tions. Newly created objects are placed in the youngest generation.
On each GC cycle, surviving objects from generationN are moved
into generationN + 1. There are two types of cycles: minor cycle,
in which only the youngest generation is collected3; and major cy-
cle, in which all generations are collected and surviving objects are
compacted in the second generation. After each cycle the youngest
generation is empty.

Note that objects from a younger generation may be referenced
by objects from older generations, and thus it seems that the GC
must sweep through all generations anyway. It is important to
understand how these cross-generation references appear, in order
to come up with the optimization that makes generational garbage
collection much faster during minor cycles. After a GC cycle the

3 Technically, more than one generation may be collected on a minor cycle,
but SBCL’s gencgc collects only the youngest one.

youngest generation is empty, so there are no objects in the older
generations that may reference an object to be collected in the next
minor cycle. The only way that such reference might occur is by
creating a new object (which ends up in the youngest generation)
and then creating a reference to it in some older generation object.
This reference creation involveswriting to some memory location
belonging to an older generation.

The optimization then becomes apparent. At the end of a cycle,
the GC sets up awrite barrier – it write-protects all memory
belonging to older generations. Thus, if a memory write occurs in
a protected page, a signal is raised. The signal handler un-protects
the corresponding memory page and proceeds with the writing. At
the next minor cycle, all pages that are still write-protected are
guaranteedto not have been written to, so then don’t have any
references to the youngest generation. Only unprotected memory
pages are swept. This mechanism is crucial for the performance of
the generational garbage collection. If it were not in place, it would
in fact take more time to perform a cycle that a regular GC, due to
the increased complexity and virtually no other benefit.

The write barrier is set using the OSmprotect syscall. It took
us considerable amount of time to get to know the generational
garbage collection and hack through it, until we finally realized
that CNK’s mprotect syscall does nothing – it’s just an empty
stub that returns ’no error’. This means that memory writes to older
generation objects proceed normally and the signal handler that un-
protects the memory pages is never called. This then leads to the
fact that, to the best of gencgc’s knowledge, all pages in the older
generations remain ’write-protected’ and thus are never swept. And
that means that objects from the youngest generation that are only
referenced by older generations are collected, which leaves these
references dangling.

The first thing we did after finding out about thismprotect
misbehavior, was to turn off the optimization and pretend that
all pages need sweeping. As expected, gencgc started working
correctly, but unacceptably slower. So, we decided to switch to
Cheney GC.

In the Cheney GC scheme [9], the available memory is divided
into two equal semi-spaces, only one of which is used at any one
time. Garbage is collected by copying referenced objects from the
live semi-space to the spare one. The semi-spaces then switch roles
and the entire spare half is cleareden bloc.

Important decisions in this scheme are when and how to trigger
GC. In the SBCL’s implementation the ‘when’ part is decided based
on some heuristic that relates to how much memory was cleared
during the last GC run and some other parameters. The exact details
are not related to the scope of this article. It is the ‘how’ part
that turned up very relevant. At the end of each GC cycle, the
heuristic sets a high water mark, thecurrent auto gc trigger,
and the GCwrite-protectsall the memory above the mark. Object
allocation above this mark leads to a memory write, which raises a
signal that triggers the garbage collection.

So it turned out that GC triggering relies on the same broken
mprotect and as a consequence never happens. A brief glint of
hope proved to be this piece of code from
src/runtime/cheneygc.c:

#if defined(SUNOS) || defined(SOLARIS)
os_invalidate(addr, length);

#else
os_protect(addr, length, 0);

#endif

which shows that other operating systems have the same prob-
lem and it is solved by just invalidating the pages above the high
water mark. Unfortunately, this option was quickly dismissed af-
ter observing thatmunmap also does nothing useful and user-space
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programs can read and write unmapped memory in any way they
want, without raising a signal.

We decided to tackle the problem by hacking theallocation
macro. When an object is being allocation, the code would first
check whether it would end up above the high water mark, and if
so it would issue a trap that will trigger the GC
(src/compiler/ppc/macros.lisp):

#!+bgpcnk
(let ((,label1 (gen-label)))
(inst lr ,temp-tn (make-fixup

"current_auto_gc_trigger"
:foreign))

(inst lwz ,temp-tn ,temp-tn 0)
(inst cmpwi ,temp-tn 0)
(inst beq ,label1)
(inst cmpw alloc-tn ,temp-tn)
(inst bng ,label1)
(inst unimp force-gc-trap) ;; ---> GC
(emit-label ,label1))

Theforce-gc-trap is a new trap identifier we defined in
src/compiler/ppc/params.lisp whose presence is checked in
the SIGTRAP allocation and if found, leads to triggering the GC.
This approach worked and the garbage collection began proceeding
as expected.

3.7 select problems

The next problem we experienced was related to the special treat-
ment ofstdin in the CNK. As mentioned earlier, all I/O, including
stdio, proceeds through a proxying mechanism in which the com-
pute node kernel communicates with the CIOD on the I/O node
using an internal protocol. Reading fromstdin and writing to
stdout andstderr is treated differently from reading and writ-
ing to/from ordinary files. A crucial difference is that theselect
syscall is not working forstdin andstdout – it just returns an
EINVAL error. This leads to the inability to perform non-blocking
reads, which messes upsysread-may-block-p for stdin, which
is called early during the SBCL warm up procedure.

We tried without success different approaches to overcome this
issue and finally we decided to introduce an additional command
line argument,--stdin <fname>, to the SBCL runtime. The run-
time would then open the file and make the*stdin* fd-stream use
its descriptor instead of the standard 0. Thus,*stdin* would ulti-
mately point to a file, andselect worked fine for files. Here are
the relevant portions of the code (src/runtime/runtime.c):

#if defined LISP_FEATURE_BGPCNK
int stdin_fd = 0;
#endif
...
#if defined (LISP_FEATURE_BGPCNK)
}else if (0 == strcmp(arg, "--stdin")) {
++argi;
if (argi >= argc) {
lose("missing argument for --stdin");

}
stdin_fd = open(argv[argi++], O_RDONLY);
if(stdin_fd==-1) {
lose("cannot open stdin replacement");

}
#endif

And in src/code/fd-stream.lisp:

#!+bgpcnk
(sb!alien:define-alien-variable

("stdin_fd" *stdin-fd*) int)
...
(setf *stdin*

(make-fd-stream
#!-bgpcnk 0 #!+bgpcnk *stdin-fd*
:name "standard input" :input t
:buffering :line
:element-type :default
:serve-events t
:external-format
(stdstream-external-format nil)))

This solved the problem and the runtime started processing
make-target-2.lisp andmake-target-2-load.lisp, and fi-
nally make-target-2.sh was all done. This completed the main
build process.

3.8 Enter the REPL

Eager to try the new build, we run./run-sbcl.sh and found
out thatgetpwd was not working. We quickly located the root
cause of the problem – for some unknown reasonscalloc (used
in wrap.c) ended up allocating 4096 bytes, but zeroing out 4108
(?!?). We decided not to research any further and instead replace
thecalloc call with malloc, followed bymemset. After invoking
./run-sbcl.sh again, we saw the REPL and declared major
success.

3.9 Switching to dynamic linking

The default linking mode of the cross-compilers on the BG/P is
static linking. This makes sense, since the CNK only executes one
process and having shared libraries is not much of a benefit, at least
for RAM savings. Dynamic linking is supported however, and we
had to use it in order to support the foreign function interface.

Switching to dynamic linking proved to be a major problem, be-
cause it turned out that the CNK places dynamically linked executa-
bles in a virtual address space that is above 2GB. However, the Lin-
ux/PPC SBCL implementation is 32-bit and the most-significant bit
in its pointers is used for tagging purposes. As with the signal con-
text related problems, this was almost a show-stopper.

The solution presented itself in the form of a mechanism called
persistent memory. In some circumstances one can make the CN
boot its operating system, execute a job, and then without shutting
down, execute another job. The persistent memory mechanism al-
lows one to designate some memory that does not get wiped out
between the jobs. The exact semantics of this did not become ap-
parent, because we actually didn’t use persistent memory. We used
a side-effect: if any memory is labeled persistent, the CNK will
place the executable image lower, around 1GB. The mechanism is
controlled via environment variables, so an easy workaround was
to just require a single block of persistent memory during startup:

export BG_PERSISTMEMRESET=1
export BG_PERSISTMEMSIZE=1

The BG PERSISTMEMRESET environment variable reinitializes
the block every time, so in fact it is not persistent at all. Still, the
workaround worked for us:load-shared-object and the whole
foreign function interface was now operational.

3.10 Building the contribs

The one remaining challenge was to build the contrib packages. No
major problems occurred here, but there were a few minor glitches:

• sb-grovel built fine, but was not usable, since it works by
forking a gcc process, compiling afoo.c and then running
it; its output is constants.lisp, which is included in the
target build. All this is not possible on the CNK: there is
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no fork syscall, not to mention the lack ofgcc. So, at all
places wheresb-grovel was used (which aresb-posix and
sb-bsd-streams), we had to manually perform the procedure
on the FEN and create a pre-definedconstants.lisp file, just
like in the win32 case;

• Some of the contribs (sb-posix mainly) usedlopen(NULL)
and thendlsym to find some of the functions from thelibc li-
brary. This however turned out to be non-operational on CNK.
The easy solution was to add these functions to a list of sim-
ilar entities in tools-for-build/ldso-stubs.lisp. This
makes their addresses available beforehand.

By fixing these, we managed to perform a full build of SBCL
for the CNK. We proceeded with loading SLIME’sswank and then
connected to it with an emacs/SLIME environment on our desktop,
via ssh tunneling to the FEN.

4. Current status of the port
Given the marginal user base of the port and the fact it is still very
young, it is hard to assess whether it has production quality. We can
report that the following do work:

• The tests included in SBCL’s distribution PASS, except those
related to the limitations listed below;

• We managed to run SLIME’sswank on the CNK and to connect
to it from an emacs/SLIME environment on a desktop machine;

• Foreign-function bindings to MPI works, which allows the par-
allel runtimes to communicate with each other in HPC mode;

While these are sufficient to move forward and start thinking
about the items listed in the Future Work section, there are known
limitations which have to be considered:

• No threads support. Threads only work in gencgc environment
and the port uses Cheney GC.

• Only works in SMP mode. The persistent memory hack used
to workaround the 2GB virtual address does not work in VN
and DUAL mode. And because there is no thread support, this
means a lot of wasted resources.

• sb-grovel does not work on the CN. It relies on thefork
syscalls, which is not implemented;

• asdf-install does not work on the CN. It relies on the
gethostbyname syscall, which only honors the hosts file since
there is no resolver on the computing node;

• More tests are required in order to come up with a complete list
of syscalls that are not implemented or not working properly;

• The SBCL compiler does not know about the second FPU
present in each processor core. This leads to performance waste.

5. Future Work
While the port described above enables SBCL to run in a parallel
environment with thousands of processors, that is really all it does.
In order to make Lisp a great platform for developing scalable,
high-quality parallel software, there is still a lot of work that needs
to be done in several different areas.

Overcoming the limitations of the port One of the directions for
future work is to try and overcome the limitations of the port, most
notably make gencgc work and introduce thread support. It is hard
to see how we can proceed in this direction without changes in the
operating system, so further research is needed in order to come up
with a solution.

Speaking of changes, the port also needs mechanism for dealing
with them in the future versions of the OS and a test suite to

help check whether the assumptions for the syscalls still hold. This
requires constant monitoring of the source code of the CNK and
making appropriate decisions. Right now it is hard to forsee if,
how and when some of the more difficult syscalls problems will
be resolved.

One of the limitations – the lack of support for the second FPU
– does not depend on operating system changes. This means that
work on this item can start immediately. It would require in-depth
knowledge of the compiler inner workings and skills in the practice
of code optimizations.

Scientific libraries bindings Another obvious direction for future
work is the creation of foreign-function bindings to the most pop-
ular scientific libraries and wrapping them in constructs that are
closer to the Lisp philosophy. Bindings for these libraries will en-
able the reuse of knowledge and help jump-start Lisp development
by giving optimized tools in the hands of the daring. There is no
particular wish list or order of preference for this task and its so-
lution will come naturally and gradually over time. It is important
to note that such activities are not directly related to the SBCL port
for BlueGene/P, but to the Lisp platform in general.

Native libraries An alternative to the above is the creation of
counterpart native libraries. A lot of effort must be put forward
in order to make the performance of such code optimal. One idea
is to implement critical procedures as VOPs entirely in Assembly
language and make them part of the compiler. For example, the
fastest BLAS library implementation – GotoBLAS [3] – is hand-
coded in Assembler and is open sourced. We might reuse this
knowledge and make it part of the Lisp environment. Again, this
is not related with the port described above and is of a more
general nature. One thing that does relate to the port though, is
that such native assembly code can make use of the second FPU of
the computing node processors, which will additionally boost the
performance.

Shared memory One of the problems with the BlueGene/P archi-
tecture is that each computing node has access to 2GB of memory
at most. In Virtual Node mode this figure is even smaller – 512
MB. This will definitely be a problem for large calculations and
one of the possible solutions is to create a virtual shared-memory
block that is distributed over the computing nodes. This will al-
low large data collections to be used transparently without wor-
rying about memory constraints and details regarding where they
are stored and how to access them. Such solution already exists
for C/C++/FORTRAN – the Global Arrays Toolkit [2]. Of course
we can bind to this library and use it, but it would be even better if
similar mechanism could be implemented for native Lisp collection
data types (lists, hash tables, arrays). Even though the BlueGene/P
port will certainly benefit from such solution, it would also apply
to other parallel environments as well.

Parallel interactive programming Interactivity is one of the dis-
tinguished features of Lisp and it adds a lot to its dynamic nature.
Unfortunately, it is not quite clear how it fits in a parallel environ-
ment. When we have thousands of virtual machines running, how
are we supposed to interact with any and all of them? Or for that
matter, with different subsets of them? Where do we put the REPL,
the debugger console, and if we decide where to put it, how are the
other machines going to interact with it? How are we to keep the
dynamic nature of the language in such a world? Because, if we
are to give up the interactivity and the dynamic nature, we might
as well be better off just using C. These are some rather difficult
questions and they call for new ingenious approaches to interactiv-
ity in parallel environments. Can we achieve it without changing
the fundamentals of the language? Future research will show.

One simple idea that comes to mind is to place the REPL on a
certain master node, say MPI rank 0. Then, by using a reader macro
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we can instruct the reader to forward the next form to a certain slave
node (or set of nodes). Such forwarding can be made on top of MPI.
The following crude example illustrates this idea:

(defvar *mpi-rank* nil)
(defvar *mpi-size* nil)
(defvar *mpi-streams* nil)

(defun swamp ()
(mpi-init)
(setf *mpi-rank* (mpi-comm-rank))
(setf *mpi-size* (mpi-comm-size))
(cond
((/= 0 *mpi-rank*)
;; slaves
(setf *standard-input*
(make-instance ’mpi-input-stream

:rank 0 :tag 99))
(swank::simple-repl))

(t
;; master
(setf *mpi-streams* (make-array *mpi-size*))
(dotimes (i *mpi-size*)
(setf (aref *mpi-streams* i)

(make-instance ’mpi-output-stream
:rank i :tag 99)))

(set-dispatch-macro-character
#\# #\>
#’(lambda (stream sub-char rank)

(declare (ignore sub-char))
(let ((out (aref *mpi-streams* rank)))
(print (read stream) out)
(finish-output out))))

(swank:create-server)))
(mpi-finalize))

This example is based onswank and uses a couple of classes,
MPI character input/output streams, that can be easily built on top
of Gray streams (sb-gray) by subclassing relevant base classes.
The actual I/O can be performed by usingMPI Recv andMPI Send.

The slave nodes redirect their standard input to an MPI input
stream and runswank’s REPL. Each of the slaves’ input streams
are connected with corresponding output streams, created by the
master and stored in an array indexed by slave node rank. The
master also installs a reader macro which redirects the next form
to a certain node, and creates aswank server to which an external
SLIME can connect.

The macro interprets its last argument as the target slave rank,
finds its stream, reads the following form and puts it on the stream.
On the other end of the stream the target slave’s REPL reads and
evaluates the form. Thus, the following input:

CL-USER> #123> (defun fact (i)
(if (= i 1)

1
(* i (fact (1- i)))))

will lead to sending thedefun form for evaluation to node 123.
This example is rudimentary and a real solution would also need

to take care of multiple nodes specification, debugger redirection,
and many more details. One of the problems with this approach
is that the form gets parsed twice – by the REPL at the master,
and then by the REPL at the slave. Another approach would be to
introduce a new form,in-node, which somehow switches the node
that will perform the REPL.

All in all, the area of parallel interactive programming seems
like a major topic for future research. Again, this is not directly
related to the SBCL port for IBM BlueGene/P, but is of a more
fundamental nature.

Revisiting *Lisp, CM-Lisp and others Efficient high-level paral-
lel programming languages based on Lisp were conceived in the
past. Some of the notable examples are CM-Lisp, *LISP and Par-
alation Lisp (see the Related Work section). A lot of effort was put
in those works and it would be wise to reuse the knowledge. It is
worth exploring the idea to revisit these languages and see if they
can be made fit to work in distributed-memory MPI-based environ-
ment, including clusters and modern supercomputers.

6. Related Work
The IBM BlueGene/P is mainly a distributed-memory parallel
machine. A processor does not have direct access to the mem-
ory of other processors and interprocess communication is mainly
achieved via MPI. A quite different approach to parallelism is the
shared-memory model, in which all parallel instances have ac-
cess to the same memory. There are a lot of Lisp implementa-
tions which support the shared-memory model by utilizing multi-
thread support, including SBCL itself. Scieneer Common Lisp
[6] is another example of an excellent implementation for high-
performance computing that supports multi-threading on a variety
of different platforms.

The SBCL port for IBM BlueGene/P is definitely not the first
supercomputing Lisp environment ever. Such environments existed
in the past, the defining example being the Connection Machine
[10], invented in the 1980s. This is a massively parallel supercom-
puter whose computing nodes are organized in a cubic structure not
very different from the way the BlueGene is organized. It has thou-
sands of simple processors, each having a small amount of local
memory and operating in SIMD fashion. The BlueGene/P however
has a more general organization that also allows MIMD mode of
operation to be implemented.

A SIMD machine calls for data-parallel languages. Several such
languages were designed, the most notable being CM-Lisp, *LISP
and Paralation Lisp.

CM-Lisp (Connection Machine Lisp) [18] introduced mech-
anisms for describing distributed data structures (for example
xapping, xector, etc.) and instructions that operate in parallel
over such structures (e.g.apply-to-all).

Similar concepts are introduced in *LISP [13]. It is realized as
a Common Lisp extension and its fundamental data structure is the
Pvar, a parallel variable, represented as a vector. Operations on
Pvars are executed in parallel over a set of nodes on the Connection
Machine. The language introduces primitives for performing basic
operations onPvars, as well as means for communication between
them. A parallel pretty-printer is also present (ppp), which can be
useful in deriving the concept for parallel interactive programming
described above.

Paralation Lisp is crafted after the model described in [16] and
is embedded in Common Lisp. Again, it introduces a parallel data
structure (field) and means to specify locality, communication
and parallel operations on fields.

7. Conclusion
Lisp is known to possess many features beyond the static C/C++
and FORTRAN family of languages, such as:

• interactive work during design-time, debug-time and run-time
that greatly reduces application creation efforts;

• built-in exact and large-number arithmetic;
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• automatic garbage collection;

• ability to construct high-level syntactic and control abstractions
through unparalleled macro facilities;

• condition handling system that provides much wider options for
error handling than exception handling in static languages;

• fully dynamic environment in which code, types and data can
be replaced during execution, and in which different HPC nodes
can work on quite different tasks;

• ability to control the language environment itself on all levels,
including parsing, evaluating, printing, effectively allowing the
user to create problem-specific languages;

All these (and many more) are quite applicable for the field of
parallel computing and will enable new programming techniques,
paradigms and algorithms to be created, based on bottom-up, in-
teractive and high-level abstractions programming model. Having
a Lisp environment enables authors to come up with entirely new
ways of organizing the computing process. We think that imple-
menting highly sophisticated systems that smartly use the comput-
ing resources would be easier to implement in Lisp than in C, C++
or FORTRAN.

The SBCL build for IBM Blue Gene/P described in this paper
brings all these Lisp features into the present-day peta-scale super-
computing domain. Hopefully, this will help make Lisp the lan-
guage of choice for creating highly-scalable, self-adapting parallel
applications for the science and industry.

The author maintains an open source project at SourceForge
(http://sourceforge.net/projects/bgp-sbcl/), which in-
cludes the patches that need to be applied to the SBCL source tree
in order to make it compile for the Blue Gene/P CNK.
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ABSTRACT
This paper discusses Lisp primitives and abstractions devel-
oped to support the parallel execution of a functional subset
of Lisp, specifically ACL2.

We (1) introduce our Lisp primitives (futures) (2) present
our abstractions built on top of these primitives (spec-mv-
let and plet+), and (3) provide performance results.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.2 [Programming Lan-
guages]: Language Classifications—applicative (functional)
languages

General Terms
Performance, Verification

Keywords
functional language, parallel, plet+, spec-mv-let, granular-
ity, Lisp, ACL2

1. INTRODUCTION
Our project is about supporting parallel evaluation for ap-
plicative Common Lisp, specifically the purely functional
programming language provided by the ACL2 system [11,
9]. We provide language primitives, three at a low level and
two at a more abstract level, for convenient annotation of
source code to enable parallel execution.

Our intended application for this parallel evaluation capabil-
ity is the ACL2 theorem prover, which has been used in some
of the largest industrial formal verification efforts [2, 14]. As
multi-core CPUs become commonplace, ACL2 users would
like to take advantage of the underlying available hardware

resources [10]. Since the ACL2 theorem prover is primarily
written in its own functional language, it is reasonable to in-
troduce parallelism into ACL2’s proof process in a way that
takes advantage of the functional programming paradigm.

After discussing some related work, we introduce three Lisp
primitives that enable and control parallel evaluation, based
on a notion of futures. We build on these three primitives
to introduce two primitives at a higher level of abstraction.1

We then demonstrate these primitives’ utility by presenting
some performance results. We conclude with remarks that
include challenges for the Lisp community.

2. RELATED WORK
There is a large body of research in parallelizing functional
languages and their applications, including work in auto-
mated reasoning. Here, we simply mention some of the pio-
neers and describe some recent developments in the area.

An early parallel implementation of Lisp was Multilisp, cre-
ated in the early 1980s as an extended version of Scheme [6].
It implemented the future operator, which is often defined
as a promise for a form’s evaluation result [7, 3]. Other
parallel implementations of Lisp include variants such as
Parallel Lisp [7], a Queue-based Multi-processing Lisp [4],
and projects described in Yuen’s book “Parallel Lisp Sys-
tems” [16]. Our approach builds upon these approaches
by implementing parallelism primitives and abstractions for
systems that are compliant with ANSI Common Lisp, and
thus, available for use in applications like ACL2. Further-
more, our abstractions have clear logical definitions inside a
theorem proving system, making it straightforward to rea-
son about their use.

More recent developments include the Bordeaux Threads
project [1], which seeks to unify the multi-threading inter-
faces of different Lisps. We approach the same problem
by providing a multi-threading interface [12, 13] to Clozure
Common Lisp (CCL) and Steel Bank Common Lisp (SBCL).
We have our own multi-threading interface because we need
some different features. For example, our interface exposes

1The higher-level primitives are defined within the ACL2
logic, and hence have clear functional semantics that are
amenable to formal verification. We avoid further discussion
of the ACL2 logic in this paper.
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a CCL feature for semaphores, notification objects, that we
use to determine whether a semaphore was actually signaled
(as opposed to returning from a wait due to a timeout or in-
terrupt).

Another recent development is Haverbeke’s PCall library [8].
This library is similar to our futures library, in that it pro-
vides a way to spawn a thread to evaluate an expression and
then use the returned value in the original spawning thread.
As a branch of this PCall library, Sedach has initiated the
Eager Future2 project, whose web site [15] reports some ad-
ditional features like error handling and the ability to force
the abortion of a future’s evaluation. Our latest extension
of ACL2, which is described in this paper, has some of these
features.

3. FUTURES LIBRARY
There are three Lisp primitives that enable and control par-
allel evaluation: future, future-read, and future-abort.
The future macro surrounds a form and returns a data
structure with fields including the following: a closure rep-
resenting the necessary computation, and a slot (initially
empty) for the value returned by that computation. This
structure can then be passed to future-read to access the
value field after the closure has been evaluated. The final
primitive, future-abort, terminates futures whose values
are no longer needed.

The following näıve version of the Fibonacci function illus-
trates the use of future and future-read.

(defun pfib (x)
(if (< x 33)

(fib x)
(let ((a (future (pfib (- x 1))))

(b (future (pfib (- x 2)))))
(+ (future-read a)

(future-read b)))))

Even if only a single core is available, we still want to support
the delaying of a computation until its result is needed, as il-
lustrated by the spec-mv-let primitive discussed in the next
section. Of course, in the single-threaded case we need not
provide infrastructure for distributing computation to more
than one thread. The following discussion of our implemen-
tation of futures primitives thus includes optimizations for
the single-threaded case.

The multi-threaded implementation of future provides the
behavior summarized above as follows: when a thread eval-
uates a call of future, it returns a future, F. F contains a
closure that is placed on the work-queue for evaluation by
a worker thread. The value returned by that computation
may only be obtained by calling the future-read macro on
F. If a thread tries to read F before the worker thread fin-
ishes evaluating the closure, the reading thread will block
until the worker thread finishes. However, when the single-
threaded implementation is given a future, F, to read, if the
future has not previously been read, the closure is evaluated
by the reading thread, and the resulting value is saved in-
side F. The final primitive, future-abort, removes a given
future, F, from the work-queue; sets an abort flag in F; and
aborts evaluation (if in progress) of F’s closure.

4. ABSTRACTIONS
We build two abstractions on top of the futures primitives.
These abstractions avoid the difficult task of introducing fu-
tures into the ACL2 programming language and logic. One
primitive, spec-mv-let, is similar to mv-let (ACL2’s no-
tion of multiple-value-bind). Our design of spec-mv-let
is guided by the shape of the code where we want to par-
allelize ACL2’s proof process. Spec-mv-let calls have the
following form.

(spec-mv-let
(v1 ... vn) ; bind distinct variables
<spec> ; evaluate speculatively; return n values
(mv-let
(w1 ... wk) ; bind distinct variables
<eager> ; evaluate eagerly
(if <test> ; ignore <spec> if true

; (does not mention v1 ... vn)
<abort-form> ; does not mention v1 ... vn
<normal-form>))) ; may mention v1 ... vn

Evaluation of the above form proceeds as suggested by the
comments. First, <spec> is executed speculatively (as our
implementation of spec-mv-let wraps <spec> inside a call
of future). Control then passes immediately to the mv-let

call, without waiting for the result of evaluating <spec>.
The variables (w1 ... wk) are bound to the result of eval-
uating <eager>, and then <test> is evaluated. If the value
of <test> is true, then the values of (v1 ... vn) are not
needed, and the evaluation of <spec> may be aborted. If
the value of <test> is false, then the values of (v1 ... vn)

are needed, and <normal-form> blocks until they are avail-
able.

The other abstract primitive, intended to be of more general
use to the ACL2 programmer, is plet+. Plet+ is similar to
let, but it has three additional features: (1) it can eval-
uate its bindings in parallel, (2) it allows the programmer
to bind not just single values but also multiple values, and
(3) it supports speculative evaluation, only blocking when
the bindings’ values are actually needed in the body of the
form. Plet+ is an enhanced version of our previous primi-
tive, plet [13], and it supports the Lisp declarations for let
that are allowed by ACL2: type, ignore, and ignorable.
An optional granularity form (as for plet) provides a test for
whether the computation is estimated to be of large enough
granularity. To date we have restricted our use of plet+ to
small examples, preferring to use spec-mv-let in our ACL2
builds and testing. That may change as we further develop
plet+, for example by reducing the garbage generated when
binding multiple values.

5. PERFORMANCE RESULTS
We first present example uses of each primitive with näıve
versions of the Fibonacci function, comparing their times for
parallel and serial executions. Figure 1 shows the results for
these tests. Then, in Subsection 5.4, we compare the per-
formance of the parallelized ACL2 prover to the unmodified
(serial) version.

All testing was performed on an eight-core 64-bit Linux ma-
chine running 64-bit CCL with the Ephemeral Garbage Col-
lector (EGC) disabled and a 16 gigabyte Garbage Collection
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(GC) threshold. See Subsection 5.5 for the reasons behind
this decision. All times are reported in seconds, and each
speedup factor reported is a ratio of serial execution time to
parallel execution time. In each case we report minimum,
maximum, and average times for ten consecutive runs of
each test, both parallel and serial, in the same environment.
The scripts and output from running these tests are available
for download at http://www.cs.utexas.edu/users/ragerdl/-
els2011/supporting-evidence.tar.gz.

5.1 Testing Futures
Recall the definition of pfib in Section 3. In our experi-
ments, calling (pfib 45) yielded a speedup factor of 7.62
on an eight-core machine, which is nearly ideal in spite of
asymmetrical computations occurring at the end of parallel
evaluation.

Thus futures provide an efficient mechanism for parallel eval-
uation. But they also provide an efficient mechanism for
aborting computation. By running the following test, we can
see how long it takes to abort computation that has already
been added to the work-queue. The following script takes
approximately 6 seconds to finish, so it only takes about 60
microseconds to spawn and abort a future. We call func-
tion count-down, which is designed to consume CPU time.
(Count-down 1000000000) typically requires about 5 sec-
onds. Since calling mistake 100,000 times only requires 6
seconds, we know that we are actually aborting computa-
tion.

(defun mistake ()
(future-abort (future (count-down 1000000000))))

(time
(dotimes (i 100000)
(mistake)))

5.2 Testing Spec-mv-let
We next define a parallel version of the Fibonacci function
using the spec-mv-let primitive. The support for specula-
tive execution provided by spec-mv-let is unnecessary here,
since we always need the result of both recursive calls; but
our purpose here is to benchmark spec-mv-let. The follow-
ing definition has provided a speedup factor of 7.75 when
evaluating (pfib 45).2

(defun pfib (x)
(if (< x 33)

(fib x)
(spec-mv-let (a)

(pfib (- x 1))
(mv-let (b)
(pfib (- x 2))
(if nil

"speculative result is always needed"
(+ a b))))))

5.3 Testing Plet+
The following version of the Fibonacci function, which uses
plet+, has provided a speedup factor of 7.82 for the evalu-
ation of (pfib 45).
2ACL2 users may be surprised to see mv-let bind a single
variable. However, this definition is perfectly fine in Lisp,
outside the ACL2 read-eval-print loop.

Figure 1: Performance of Parallelism Primitives in
the Fibonacci Function

Case Min Max Avg Speedup
Serial 40.06 40.21 40.08

Futurized 5.15 5.78 5.26 7.62
Spec-mv-let 5.13 5.22 5.17 7.75

Plet+ 5.08 5.18 5.12 7.82

Figure 2: Performance of ACL2 Proofs with the
EGC Disabled and a High GC Threshold

Proof Case Min Max Avg Speedup
Embarrass serial 36.49 36.53 36.50

par 4.58 4.61 4.60 7.93
JVM-2A serial 229.79 242.40 231.14

par 34.42 39.42 35.51 6.51
Measure-2 serial 175.99 179.93 176.53

par 47.07 53.71 50.01 3.53
Measure-3 serial 86.63 86.85 86.73

par 24.24 25.36 24.90 3.48

(defun pfib (x)
(if (< x 33)

(fib x)
(plet+ ((a (pfib (- x 1)))

(b (pfib (- x 2))))
(with-vars (a b)

(+ a b)))))

5.4 ACL2 Proofs
We currently use spec-mv-let to parallelize the main part
of the ACL2 proof process. We are not interested in speedup
for proof attempts that take a small amount of time. How-
ever, we have obtained non-trivial speedup for some sub-
stantial proofs.

Figure 2 shows the speedup for four proofs. The first proof
is a toy proof that we designed to be embarrassingly parallel
and test the ideal speedup of our system. The proof named
“JVM-2A”is about a JVM model constructed in ACL2. The
third and fourth proofs are related to proving the termi-
nation of Takeuchi’s Tarai function [5]. These proofs are
not intended to be representative of all ACL2 proofs. Par-
allelism does not improve the performance of many ACL2
proofs, and it might even slow down some proofs. Investi-
gating these issues is part of our future work.

5.5 The Effects of GC
We now consider the performance of parallelized ACL2 with
different garbage collector configurations. In Figure 3, we
report the performance of proof “JVM-2A” with the EGC
either enabled or disabled and the GC configured to use
either the default threshold or a threshold of 16 gigabytes.

While it is clear that both serial and parallel executions ben-
efit from having the EGC disabled and a high GC threshold,
one may wish to make a comparison not presented in the
figures. Specifically, one could compare the optimal serial
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Figure 3: Performance of Theorem JVM-2A with
Varying GC Configurations

EGC & Case Min Max Avg Speedup
Threshold
on, default serial 245.52 246.99 246.79

par 372.54 482.62 413.42 0.60
on, high serial 245.38 247.09 246.90

par 377.91 524.78 422.20 0.58
off, default serial 291.57 292.14 291.97

par 110.57 117.17 114.77 2.54
off, high serial 229.79 242.40 231.14

par 34.42 39.42 35.51 6.51

configuration that uses the default GC threshold (where the
EGC is enabled) to the optimal parallel configuration that
uses the default GC threshold (where the EGC is disabled).
In this comparison, the serial execution requires an average
of 247 seconds, and the parallel execution takes an average
of 115 seconds, yielding a speedup factor of 2.15.

Figure 3 shows that for applications running in parallel, it
may be beneficial to disable the EGC and use a high GC
threshold. Of course, those steps would likely be unneces-
sary in the presence of parallelized garbage collection.

6. CONCLUSION
We provide parallelism primitives at two levels of abstraction
and demonstrate their successful use in speeding up compu-
tation. The higher-level library provides abstractions, spec-
mv-let and plet+, which allow significant speedup with lit-
tle extra annotation in the code. The lower-level library is
based on the concept of futures and provides more explicit
control of parallel computations. Note that the higher-level
primitives fit nicely into the ACL2 applicative programming
environment. Indeed, we parallelized the key ACL2 proof
process, which is written in the ACL2 programming lan-
guage, using spec-mv-let. Our results to date are promis-
ing, obtaining significant reductions in some proof times us-
ing this parallelized version.

It is our hope that by bringing the continued development of
this library to the attention of the Lisp community: (1) ideas
from our library can be reused in other systems, (2) Lisp
implementors will be motivated to continue improving multi-
threading capabilities, for example by parallelizing garbage
collection, (3) the Lisp community will continue to think
about parallelism standards, and (4) we will gain feedback
on ways to improve our implementation and/or design.
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ABSTRACT
We address the concrete problem of implementing bottom-up term
automata and in particular huge ones. For automata which have so
many transitions that they cannot be stored in a transition table we
have introduced the concept of fly-automata in which the transition
function is represented by a (Lisp) function.

We present the implementation of fly-automata inside the Autowrite
software. We define some fly-automata in the domain of graph
model checking and show some experiments with these automata.
We compare fly-automata with table automata.

Categories and Subject Descriptors
D.1.1 [Software]: Programming Techniques, Applicative (Func-
tional) Programming; F.1.1 [Theory of Computation]: Models
of Computation, Automata; G.2.2 [Mathematics of Computing]:
Graphs Theory, Graph Algorithms

Keywords
Tree automata, Lisp, graphs

1. INTRODUCTION
The Autowrite1 software entirely written in Common Lisp was first
designed to check call-by-need properties of term rewriting sys-
tems [6]. For this purpose, we have implemented term (tree) au-
tomata. In the first implementation, just the emptiness problem
(does the automaton recognize the empty language) was used and
implemented.

In subsequent versions [7], the implementation was continued in or-
der to provide a substantial library of operations on term automata.
The next natural step was to try to solve concrete problems using
this library and to test its limits. The following famous theorem [5]
connects the problem of verifying graph properties with term au-
tomata.

1http://dept-info.labri.fr/~idurand/
autowrite/

THEOREM 1.1. Monadic second-order model checking isfixed-
parameter tractablefor tree-width [2] and clique-width [5].

Tree-widthandclique-widthare graph complexity measures based
on graph decompositions. Adecompositionproduces a term repre-
sentation of the graph. For a graph property expressed in monadic
second order logic (MSO), thealgorithm verifying the property
takes the form of a term automaton which recognizes the terms
denoting graphs satisfying the property.

In [4], we have given two methods for finding such an automaton
given a graph property. The first one is totally general; it computes
the automaton directly from the MSO formula; but it is not practi-
cally usable because the intermediate automata that are computed
along the construction can be very big even if the final one is not.
The second method is very specific: it is a direct construction of
the automaton; one must describe the states and the transitions of
the automaton. Although the direct construction avoids thebigger
intermediate automata, we are still faced with the hugenessof the
automata. For instance, one can show that an automaton recogniz-

ing graphs which are acyclic has33k

states wherek is the clique-
width (see Section 3) of the graph. Even fork = 2, with which not
very many interesting graphs can be expressed, it is unlikely that
we could store the transition table of such an automaton.

The solution to this last problem is to usefly-automata. In a fly-
automaton, the transition function is represented, not by atable
(that would use too much space), but by a (Lisp) function. No
space is then required to store the transition table. In addition, fly-
automata are more general than finite bottom-up term automata;
they can be infinite in two ways: they can work on an infinite
(countable) signature. they can have an infinite (countable) number
of states.

This concept was easily translated into Lisp and integratedto Au-
towrite.

The purpose of this article is

• to present in detail the concept of fly-automaton,

• to explain how automata and especially fly-automata are im-
plemented in Autowrite,

• to present some experiments done with these automata for
the verification of properties of graphs of bounded clique-
width.

This automata approach for checking graph properties is an alter-
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native to the classical algorithms of graph theory. Many interest-
ing properties on arbitrary graphs are NP-Complete (3-colorability,
clique problem, etc). For graphs of bounded clique-width, the au-
tomaton corresponding to the property is a linear algorithm. One
advantage of the use of automata is that, using inverse-homomorphisms,
one can get easily algorithms working on induced subgraphs from
the ones working on the whole graph which is not feasible with
classical algorithms of graph theory.

2. PRELIMINARIES
We recall some basic definitions concerning terms. The formal def-
initions can be found in the on-line book [1]. We consider a finite
signatureF (set of symbols with fixed arity). We denote byFn

the subset of symbols ofF with arity n. SoF =
⋃

n Fn. T (F)
denotes the set of (ground) terms built upon a signatureF .

EXAMPLE 2.1. Let F be a signature containing the symbols
{a, b, adda_b, rela_b, relb_a, ⊕} with

arity(a) = arity(b) = 0 arity(⊕) = 2

arity(adda_b) = arity(rela_b) = arity(relb_a) = 1

We shall see in Section 3 that this signature is suitable for writing
terms representing graphs of clique-width at most2.

EXAMPLE 2.2. t1, t2, t3 andt4 are terms built with the signa-
ture F of Example 2.1.

t1 = ⊕(a, b)

t2 = adda_b(⊕(a,⊕(a, b)))

t3 = adda_b(⊕(adda_b(⊕(a, b)), adda_b(⊕(a, b))))

t4 = adda_b(⊕(a, rela_b(adda_b(⊕(a, b)))))

In Table 1 we see their associated graphs.

t1 t2 t3 t4

b

a a

b

a

ba

ab b b

a

Table 1: The graphs corresponding to the terms of Example 2.2

3. APPLICATION DOMAIN
All this work will be illustrated through the problem of verifying
properties of graphs of bounded clique-width. We present here the
connection between graphs and terms and the connection between
graph properties and term automata.

3.1 Graphs as a logical structure
We consider finite, simple, loop-free undirected graphs (extensions
are easy)2. Every graph can be identified with the relational struc-
ture 〈VG, edgG〉 whereVG is the set of vertices andedgG the bi-
nary symmetric relation that describes edges:edgG ⊆ VG × VG

and(x, y) ∈ edgG if and only if there exists an edge betweenx
andy.

2We consider such graphs for simplicity of the presentation but we
can work as well with directed graphs, loops, labeled vertices and
edges. A loop is an edge connecting one single vertex.

Properties of a graphG can be expressed by sentences of relevant
logical languages. For instance,G is completecan be expressed by
∀x,∀y, edgG(x, y) orG is stableby∀x,∀y, ¬edgG(x, y) Monadic
Second order Logic is suitable for expressing many graph proper-
ties likek-colorability, acyclicity (no cycle), . . . .

3.2 Term representation of graphs of bounded
clique-width

DEFINITION 1. Let L be a finite set of vertex labels and let
us consider graphsG such that each vertexv ∈ VG has a label
label(v) ∈ L. The operations on graphs are⊕3, the union of dis-
joint graphs, the unary edge additionadda_b that adds the missing
edges between every vertex labeleda to every vertex labeledb, the
unary relabelingrela_b that renamesa to b (with a 6= b in both
cases). A constant terma denotes a graph with a single vertex
labeled bya and no edge.

LetFL be the set of these operations and constants.

Every termt ∈ T (FL) defines a graphG(t) whose vertices are the
leaves of the termt. Note that, because of the relabeling operations,
the labels of the vertices in the graphG(t) may differ from the ones
specified in the leaves of the term.

A graph hasclique-width at mostk if it is defined by somet ∈
T (FL) with |L| ≤ k. We shall abbreviate clique-width bycwd.

4. TERM AUTOMATA
We recall some basic definitions concerning term automata. Again,
much more information can be found in the on-line book [1].

4.1 Finite bottom-up term automata
DEFINITION 2. A (finite bottom-up)term automaton4 is a

quadrupleA = (F , Q,Qf , ∆) consisting of a finite signatureF ,
a finite setQ of states, disjoint fromF , a subsetQf ⊆ Q of fi-
nal states, and a set of transitions rules∆. Every transition is
of the formf(q1, . . . , qn) → q with f ∈ F , arity(f) = n and
q1, . . . , qn, q ∈ Q.

Term automata recognizeregular term languages[10]. The class
of regular term languages is closed under the Boolean operations
(union, intersection, complementation) on languages which have
their counterpart on automata. For all details on terms, term lan-
guages and term automata, the reader should refer to [1]. An exam-
ple of an automaton is given in Figure 1.

To distinguish these automata from the fly-automata defined in Sub-
section 4.2 and as we only deal with terms in this paper we shall
refer to the previously defined term automata astable-automata.

EXAMPLE 4.1. Figure 1 shows an example of a table-
automaton. It recognizes terms representing graphs of clique-width
2 which are stable (do not contain edges). State<a> (resp. <b>)
means that we have found at least a vertex labeleda (resp. b).
State<ab> means that we have at least a vertex labeleda and at
least a vertex labeledb but no edge. Stateerror means that we
have found at least an edge so that the graph is not stable. Note that
3oplus will be used instead of⊕ insideAutowrite.
4Term automata are frequently called tree automata, but it isnot a
good idea to identify trees, which are particular graphs, with terms.
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when we are in the state<ab>, anadd_a_b operation creates at
least an edge so we reach the<error> state.

Run of an automaton on a term
The run of an automaton on a term labels the nodes of the term
with the state(s) reached at the corresponding subterm. Therun
goes from bottom to top starting at the leaves. If the access time to
the transitions is constant, the run takes linear time with regards to
the size of the term.

Recognition of a term by an automaton
A term is recognizedby the automaton when after the run of the
automaton on the term, the label of the root contains a final state.

Figure 2 shows in a graphical way the run of the automaton
2-STABLE on a term representing a graph of clique-width2. Be-
low we show a successful run of the automaton on a term repre-
senting a stable graph.

add_a_b(ren_a_b(oplus(a,b))) ->
add_a_b(ren_a_b(oplus(<a>,b))) ->
add_a_b(ren_a_b(oplus(<a>,<b>)) ->
add_a_b(ren_a_b(<ab>)) ->
add_a_b(<b>) -> <b>

4.2 Fly term automata
DEFINITION 3. A fly term automaton(fly-automatonfor short)

is a tripleA = (F , δ, fs) where

• F is a countable signature of symbols with a fixed arity,

• δ is a transition function,

δ :
⋃

n Fn × Qn → Q

fq1 . . . qn 7→ q

whereQ is a countable set of states, disjoint fromF ,

• fs is the final state function

fs : Q → Boolean

which indicates whether a state is final or not.

Note that, both the signatureF and the set of statesQ may be
infinite. A fly-automaton isfinite if both its signature and set of
states are finite.

THEOREM 4.1. Fly-automata are closed under Boolean oper-
ations, homomorphisms and inverse-homomorphisms.

We shall callbasicfly-automata that are built from scratch in order
to distinguish them from the ones that are obtained by combina-
tions of existing automata using the operations cited in theabove
theorem. We call the lattercomposedfly-automata.

4.3 Relations between fly and table-automata
When a fly-automaton(F , δ, fs) is finite, it can be compiled into
a table-automaton(F , Q, Qf , ∆). The transition table∆ can be
computed fromδ starting from the constant transitions and then
saturating the table with transitions involving new accessible states

until no new state is computed. The set of (accessible) states Q
is obtained during the construction of the transitions table. The
set of final statesQf is obtained by removing the non final states
(according to the final states functionfs) from the set of states.

A table-automaton is a particular case of a fly-automaton. Itcan
be seen as a compiled version of a fly-automaton whose transition
function δ is described by the transitions table∆ and whose final
state functionfs verifies membership toQf . It follows that the
automata operations defined for fly-automaton will work for table-
automata.

Table-automata are faster for recognizing a term but they use space
for storing the transitions table. Fly-automata use a much smaller
space (the space corresponding to the code of the transitionfunc-
tion) but are slower for term recognition because of the calls to the
transition function. A table-automaton should be used whenthe
transition table can be computed and a fly-automaton otherwise.

5. IMPLEMENTING TERM AUTOMATA
5.1 Representation of states and sets of states
States for table-automata
For table-automata, theprinciple that each state of an automaton
is represented by a single Common Lisp object has been in effect
since the beginning of Autowrite. It is then very fast to compare
objects: just compare the references. This is achieved using hash-
consing techniques.

Often we need to representsetsof states of an automaton. For
fly-automata, we shall uselists of ordered states. Each state has
an internal unique number which allows us to order states. Set
operations on sorted lists (equality, union, intersection, addition of
a state, etc) are faster. For stronger typing, these sorted lists are in
fact encapsulated insidecontainerobjects.

States for fly-automata
For fly-automata however, states are not stored in the representa-
tion. For basic fly-automata, they are created on the fly by calls to
the transition function. It follows that the previously setout princi-
ple is not necessarily applicable.

For composed automata, the states returned by the transition func-
tion are constructed from the ones returned from the transition func-
tions of the combined automata.

For operations like determinization and inverse-homomorphisms,
sets of states are involved.

If a state is not represented by a unique object, comparisonsof
states may become very costly when states become more and more
complicated. In that case, we shall have no space problem butwe
may get a time problem.

A solution is, to apply the same principle as for table-automata,
that is to say, to represent each state by a unique object. Butfor this
we shall have to maintain a table to store the binding betweensome
description of a state and the unique corresponding state. This table
could be reset between runs of the automaton on a term. But it may
happen that so many states are created by one single run that we
get a space problem. In some cases, a compromise must be found
between the two techniques.
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Automaton 2-STABLE
Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2*
States: <a> <b> <ab> <error>
Final States: <a> <b> <ab>

Transitions a -> <a> b -> <b>
add_a_b(<a>) -> <a> add_a_b(<b>) -> <b>
ren_a_b(<a>) -> <b> ren_b_a(<a>) -> <a>
ren_a_b(<b>) -> <b> ren_b_a(<b>) -> <a>
ren_a_b(<ab>) -> <b> ren_b_a(<ab>) -> <a>
oplus*(<a>,<a>) -> <a> oplus*(<b>,<b>) -> <b>
oplus*(<a>,<b>) -> <ab> oplus*(<b>,<ab>) -> <ab>
oplus*(<a>,<ab>) -> <ab> oplus*(<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>
add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>
oplus*(<error>,q) -> <error> for all q

Figure 1: A table-automaton recognizing terms representing stable graphs

ba

a b a b

a ba b a b<b><a>

<error>

<ab>

<a>

add_a_b

⊕

add_a_b

⊕

add_a_b

⊕

add_a_b

⊕

add_a_b

⊕

tG = add_a_b(⊕(a, b))

G

Figure 2: Graphical representation of an (unsuccessful) run of the automaton

5.2 Automata
The implementation of table-automata was partially discussed in
[4]. Although the implementation of table-automata benefits from
the use of Lisp, it could as well be programmed in any other gen-
eral purpose programming language. The implementation of fly-
automata however is much more interesting because of its useof
the functional paradigm to represent and combine transition func-
tions and its use of the object system to deal uniformly with fly or
table automata. Other languages likeDylan5 or Scheme6 which
provide a similar powerful integration of object-orientedand func-
tional concepts could have been used as well.

The abstract classabstract-automaton shown in Figure 3
generalizes the two notions of table-automaton and fly-automaton.
An abstract automaton has a signatureF and transitions.

The concrete classtable-transitions contains the transi-
tions which are repredented by a table.

The concrete classtable-automaton shown in Figure 3) con-
tains the automata whose transitions aretable-transitions

5http://www.opendylan.org/
6http://www.scheme.com/

and whose final states are represented by a set of states.

The concrete classfly-transitions contains the transitions
which are repredented by a function.

The concrete classfly-automaton contains the fly-automata
(F , δ, fs) whose transitionsfly-transitions and which have
a final state function to decide whether a reached state is final.

(defclass abstract-automaton
(named-object signature-mixin)

((transitions :initarg :transitions
:accessor transitions-of)))

(defclass table-automaton
(abstract-automaton)

(finalstates))

(defclass fly-automaton
(abstract-automaton)

(finalstates-fun))

Figure 3: Automata classes
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5.3 Transitions
The abstract classabstract-transitions shown in Figure 4
generalizes the two notions of transitions: table-transitions and fly-
transitions.

The transition function applied to a symbolf of arity n and a list of
n statesq1, . . . , qn returns what we call atarget. The target can
beNIL if the transition is undefined, a single stateq if the transition
is deterministic or a set of states{q′1, . . . , q

′
n′} otherwise.

When we have recursively computed the targetsT1, . . . , Tp for all
the argumentst1, . . . , tn of a termf(t1, . . . , tn), we may compute
the desired target with

apply-transition-fun-g (Figure 4)
which applies the transition function to the elements of thecarte-
sian product of the targets (a target which is a single stateq being
assimilated with the singleton{q}).

The operation compute-target (Figure 5)
implements the run of the transitions on a termt = f(t1, . . . , tn).
It computes recursively the targetsT1, . . . , Tn of the arguments
t1, . . . , tn respectively and applies apply-transition-fun-g
with f and the computed targetsT1, . . . , Tn.

6. IMPLEMENTING AUTOMATA OPERA-
TIONS

The main operations that are implemented on all automata are:

• run of an automatonA on a termt,

• recognition of a termt by an automatonA,

• decision of emptiness forA (L(A) = ∅),

• completion, determinization, complementation of an automa-
tonA,

• union, intersection of two (or more) automata,

• homomorphism and inverse homomorphism on an automa-
tonA induced by a homomorphism (inverse homomorphism)
on the constant signatureF0.

For table-automata, we have also implemented

• reduction (removal of inaccessible states),

• minimization.

but this is not discussed in this paper.Some high level operations
can be implemented at the level of abstract automata. This isthe
case for the run of an automaton, the recognition of a term.

For instance, the run of an automatonA on a termt = f(t1, . . . , tn)
is achieved by a call to by the operationcompute-target on t
andA which returns the target accessible fromt usingA.

(defgeneric compute-target (term automaton)
(:documentation
"computes target (NIL, q or {q1,...,qk})
of TERM with AUTOMATON"))

When no state is accessible, the target isNIL. Otherwise when the
computation is deterministic, the target is a single state otherwise it
is a sorted list of states.

A target isfinal if it is not NIL, if it is a single final stateq or if it
contains a final stateq.

A term isrecognizedwhen it reaches a final target.

(defgeneric recognized-p (term automaton)
(:documentation
"true if TERM recongized by AUTOMATON"))

(defmethod recognized-p
((term term) (a abstract-automaton))

(let ((target (compute-target term a)))
(values

(finaltarget-p target a) target)))

The decision of emptiness is also done at the level of the class
abstract-automaton because it involves running an automa-
ton and not creating new ones.

Determinization, complementation, union, intersection,homomor-
phism and inverse homomorphism can all be implemented for fly-
automata. We shall detail some of these constructions further.

Because a table-automaton can always be transformed into a fly-
automaton and a finite fly-automaton back to a table automatonwe
get the corresponding operations for table-automata for free once
we have implemented them for fly-automata. It is though possible
to deal uniformly with table and fly-automata.

However, for efficiency reasons, it might be interesting to imple-
ment some of these operations at the level oftable-automaton.
For instance, the complementation which consists in inverting non
final and final states is easily performed directly on a table-automaton.

Implementing operations directly at the level of
table-automaton

has the drawback that it depends on the representation chosen for
the transitions table. Whenever, we would want to change this rep-
resentation we would have to re-implement these operations. The
only advantage is a gain in efficiency.

Some operations on table-automata may give a blow-up in terms
of the size of the transition table (determinization, intersection). In
this case, the solution is to avoid compiling the resulting automaton
back to a table-automaton.

6.1 Creation of a fly-automaton
To create a basic fly-automaton one should provide a signature, a
transition function and a final state function. These three compo-
nents depend completely on the application domain.

For the automatonSTABLE of Figure 1, the states are of the class
stable-state.

The transition function is given by the operation
stable-transitions-fun.

The operation
common-transitions-fun

triggers the operations
graph-add-target,
graph-oplus-target,
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(defclass abstract-transitions () ())

(defgeneric transitions-fun (transitions)
(:documentation "the transition function to be applied to a symbol of arity

n and a list of n states"))

(defgeneric apply-transition-fun (root states transitions)
(:documentation "computes the target of ROOT(STATES) with TRANSITIONS"))

(defmethod apply-transition-fun ((root arity-symbol) (states list)
(transitions abstract-transitions))

(funcall (transitions-fun transitions) root states))

(defgeneric apply-transition-fun-g (root targets transitions)
(:documentation "computes the target of ROOT(TARGETS) with TRANSITIONS"))

(defmethod apply-transition-fun-g
((root arity-symbol) (targets list) (tr abstract-transitions))

(do ((newargs (targets-product targets) (cdr newargs))
(target nil))

((null newargs) target)
(let ((cvalue (apply-transition-fun root (car newargs) tr)))
(when cvalue

(setf target (target-union cvalue target))))))

Figure 4: Transitions

(defgeneric compute-target (term transitions)
(:documentation "computes target of TERM with TRANSITIONS"))

(defmethod compute-target ((term term) (transitions abstract-transitions))
(let ((targets (mapcar (lambda (arg) (compute-target arg transitions))

(arg term))))
(apply-transition-fun-g (root term) targets transitions)))

Figure 5: Run of an automaton

graph-ren-target
according to the root symbol of the term

(add...,ren...,oplus).
These operations have a specific implementation when statesbe-
long to the classstable-state. The code is given in Figure 6.

The functionfly-stable-automaton shown in Figure 7 re-
turns a fly-automaton which recognizes stable graphs.

(defun fly-stable-automaton
(&optional (cwd 0))

(make-fly-automaton
(setup-signature cwd)
(lambda (root states)

(let ((*ports* (iota cwd)))
(stable-transitions-fun root

states)))))

Figure 7: Fly-automaton for stability

If cwd>0, the automaton is finite and works on graphs of clique-
width less or equal thancwd. If cwd=0, the automaton is infinite
(by its infinite signature) and works on graphs of arbitrary clique-
width.

The call (fly-stable-automaton 2) returns a finite fly-
automaton whose compiled version is shown in Example 4.1.

The main task for defining a basic fly-automaton is to describethe
states and the transition function. Although it is quite simple for
the property of stability, it can be quite tricky for some properties
like acyclicity for instance. Constructions of automata for many
graph properties can be found in [3]. Most of them have been
translated into Lisp inside theAutograph7 system which itself
usesAutowrite for handling table-automata and fly-automata.

6.2 Complementation of a fly-automaton
For a deterministic and complete automaton, the complementation
consists just in complementing the final state function. Thesigna-
ture and the transitions remain the same. The correspondingcode
is shown in Figure 8.

6.3 Determinization of a fly-automaton
If an automatonA = (F , δ, fs) is not deterministic, its transition
function returns sorted sets of states{q1, . . . , qp}.

The determinized version ofA is an automatond(A) = (F , δ′, fs′).

7http://dept-info.labri.fr/~idurand/
autograph/
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(defclass stable-state (state)
((ports :type port-state :initarg :ports :reader ports)))

(defmethod graph-ren-target (a b (so stable-state))
(make-stable-state (graph-ren-target a b (ports so))))

(defmethod graph-add-target (a b (so stable-state))
(let ((ports (ports so)))

(unless (and (port-member a ports)(port-member b ports))
so)))

(defmethod graph-oplus-target ((s1 stable-state) (s2 stable-state))
(make-stable-state (port-union (ports s1) (ports s2))))

(defmethod stable-transitions-fun ((root constant-symbol) (arg (eql nil)))
(let ((port (name-to-port (name root))))

(when (or (not *ports*) (member port *ports*))
(make-stable-state (make-port-state (list port))))))

(defmethod stable-transitions-fun ((root parity-symbol) (arg list))
(common-transitions-fun root arg))

Figure 6: Fly-transitions for stability

(defmethod complement-automaton
((f fly-automaton))

(let ((d (determinize-automaton
(complete-automaton f))))

(make-fly-automaton
(signature f)
(transitions-fun (transitions-of d))
(lambda (state)
(not (finalstate-p state d))))))

Figure 8: Complementation

If Q is the domain ofδ (the set of states ofA), let d(Q) denote the
set of states ofd(A).

Each subset{q1, . . . , qp} of Q yields a state[q1, . . . , qp] in d(Q).
δ′ is defined by with

δ′ :
⋃

n Fn × d(Q)n → d(Q)

f, S1, . . . , Sn 7→ S

with q ∈ S if and only if

∃q1, . . . , qb ∈ S1 × . . . Sn such that q ∈ δ(f, q1, . . . , qn).

And fs′ is defined by

fs : d(Q) → Boolean

S 7→ ∃q ∈ S such thatfs(q)

The new final statefs′ calls the final state functionfs of A. It is then
obvious to determinize a fly-automaton. This is easily translated
into Lisp as shown in Figure 9.

(defmethod det-transitions-fun
((transitions fly-transitions))

(lambda (root states)
(let ((target

(apply-transition-fun-g
root
(mapcar (lambda (state)

(states state))
transitions)))

(when target (make-gstate target)))))

(defmethod det-finalstates-fun
((f fly-automaton))

(lambda (gstate)
(some (lambda (state)

(finalstate-p state f))
(contents (states gstate)))))

(defmethod determinize-automaton
((f fly-automaton))

(make-fly-automaton
(signature f)
(det-transitions-fun (transitions-of f))
(det-finalstate-fun f)))

Figure 9: Determinization

6.4 Other operations
The other operations (completion, union, intersection) are imple-
mented in the same style.

The transition function of union and intersection automatais a func-
tion which calls the respective functions of the composed automata.

7. EXPERIMENTS
Most of our experiments have been run in the domain of verifying
graph properties as described in Section 3.
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7.1 Fly versus table-automata
In order to compare running time of a fly-automaton and of the
corresponding table-automaton, we must choose a property and a
clique-width for which the automaton is compilable.

This is the case for theconnectedness property. We have a di-
rect construction of an automaton verifying whether a graphis con-
nected.

The corresponding table automaton has22cwd−1 +2cwd −2 states.
It is compilable up tocwd = 3. Forcwd = 4, which gives|Q| =
32782, we run out of memory.

It is possible to show that the number of states of the minimalau-

tomaton is|Q| > 22⌊cwd/2⌋
. So there is no hope of having a table-

automaton for this property andcwd > 3.

ThePn
8 graphs have clique-width3.

We could then compare the computation time with the fly-automaton
to the one with the table-automaton, with increasing valuesof n.

The size of a term representing a graphPn is 5n + 1 and its depth
is 4n − 3.

Figure 10 shows that the computation time is roughly linear with
respect ton and that the slope of the line is steeper for the fly-
automaton.

7.2 Verification of properties
We have built fly-automata (and when possible table-automata) for
the following properties. These properties and the corresponding
constructions are detailled in [3].

• Edge(X1, X2) means thatX1 andX2 are singleton and that
there is an edge between the two vertices.

• Partition(X1, . . . , Xm) means that the sets of vertices
X1, . . . , Xm

form a partition of the graph.

• k-Cardinality() means that the graph has excatlyk vertices.

• k-Coloring(C1, . . . , Ck) means that the partition of vertices
C1, . . . , Ck

forms a coloring of the graph (eachCi is a stable).

• Connectedness() means that the graph is connected (has a
single connected component).

• Clique() means that the graph a a clique as an induced sub-
graph.

• Path(X1, X2) means thatX1 contains exactly two vertices
and there is a path with vertices inX2 only connecting these
two vertices. This property is useful to express propertieson
paths.

• Acyclic() means that the graph contains no cycle.

• k-Acyclic-Colorability() means that the graph isk-acyclic-
colorable (there exists an acyclic coloring9 with k colors).

8A Pn graph is a chain ofn vertices
9An acyclic coloring is a (proper) vertex coloring in which every
2-chromatic subgraph is acyclic.

• k-Chord-Free-Cycle() means that the graph does not contain
chordless cycle of lengthk.

• k-Max-Degre() means that the maximum degree of the graph
is at mostk.

We have direct constructions of the basic fly-automata for the fol-
lowing properties.

1. Polynomial
• Stable()
• Edge(X1, X2) compilable up tocwd = 90

• Partition(X1, . . . , Xm)

• k-Cardinality()

2. Non polynomial
• k-Coloring(C1, . . . , Ck) compilable up tocwd = 4

(for k = 3)
• Connectedness() compilable up tocwd = 3

• Clique() compilable up tocwd = 4

• Path(X1, X2) compilable up tocwd = 4 (for k = 3)
• Acyclic() not compilable

With the previous properties, using homomorphisms and Boolean
operations, we obtain automata for

• k-Colorability() compilable up tok = 3 (cwd = 2), k = 2
(cwd = 3)

• k-Acyclic-Colorability() not compilable (uses Acyclic)

• k-Chord-Free-Cycle()

• k-Max-Degre()

• Vertex-Cover(X1) 2cwd states

• k-Vertex-Cover()

The Vertex-Cover10 property can be expressed by a combination of
already defined automata as shown in Figure 11.

Many problems that were unthinkable to solve with table-automata
could be solved with fly-automata. For very difficult (NP-complete)
problems we still reach time or space limitations.

Figure 12 shows the running time of a fly-automaton verifying3-
colorability on rectangular grids6 × N (clique-width8).

8. CONCLUSION AND PERSPECTIVES
We can not think about a better language than Lisp to implement
fly-automata whose transition function is represented by a function.

Verifying graph properties on graphs of bounded clique-width is
a perfect application field to test our implementation. In the near

10A vertex-coverof a graph is a set of vertices such taht each edge
of the graph is incident to at least one vertex of the set. The prob-
lem of finding a minimum vertex cover is a classical optimization
problem in computer science and is a typical example of an NP-
hard optimization problem that has an approximation algorithm.
Its decision version, the vertex cover problem, was one of Karp’s
21 NP-complete problems and is therefore a classical NP-complete
problem in computational complexity theory.
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Figure 10: Connectedness on graphsPN (cwd = 3)

;; Vertex-Cover(X1) = Stable(V-X1)
(defun fly-vertex-cover (cwd)

(x1-to-cx1 ; Stable(V-X1)
(fly-subgraph-stable-automaton
cwd 1 1))) ; Stable(X1)

;; E. X1 | vertex-cover(X1) & card(X1) = k
(defun fly-k-vertex-cover (k cwd)

(vprojection
(intersection-automaton
;; Vertex-Cover(X1)
(fly-vertex-cover cwd)
;; Card(X1) = k
(fly-subgraph-cardinality-automaton

k cwd 1 1))))

Figure 11: Fly-automaton for Vertex-Cover

future, we plan to implement more graph properties and to runtests
on real and random graphs.

In this paper, we did not address the problem of finding terms repre-
senting a graph, that is, to find a clique-width decomposition of the
graph. In some cases, the graph of interest comes with a “natural
decomposition” from which the clique decomposition of bounded
clique-width is easy to obtain, but for the general case the known
algorithms are not practically usable. This problem, knownas the
parsing problem, has been studied so far only from a very theoreti-
cal point of view. It was shown to be NP-complete in [8]. [9] gives
polynomial approximated solutions to solve this problem. More
references can be found in [3].

The concept of fly-automata is very general and could be applied to
other domains where big automata are needed. Everywhere where
table-automata have already been used, we can hope to solve bigger
problems at the condition that basic automata automata involved
could be described as basic fly-automata.
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ABSTRACT
Jobim is a library for building distributed applications in
the Clojure Lisp dialect using the actors distributed com-
puting model. To implement this model, Jobim takes ad-
vantage of Lisp extensibility features and Clojure coordina-
tion primitives. The basic coordination mechanism used by
Jobim cluster nodes and built on top of Apache ZooKeeper
and supports different communication layers like RabbitMQ
AMQP-compliant broker and the ZeroMQ sockets library.
Jobim implementation has to deal with limitations imposed
by the host Java platform when implementing some of the
advanced features available in Erlang’s OTP platform, for
instance, the creation of a big number of actors being exe-
cuted in a single Jobim node.The implementation of evented
actors using the reactor paradigm for non-blocking program-
ming is one of the proposed solutions. The resulting library
offers many of Erlang features like process linking, supervi-
sor trees and generic behaviours that can be used to build
distributed, fault tolerant applications in plain Clojure.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Languages, Algorithms

Keywords
Lisp, Clojure, Actors, Erlang, Distributed applications

1. INTRODUCTION
Clojure 1 is a modern dialect of Lisp developed by Rick
Hickey with a strong focus on concurrency and including
sophisticated programming abstractions like software trans-
actional memory (STM) [8], lock-free asynchronously and
synchronously coordinated access to state through Clojure
agents and atoms and additional features like futures and

1http://clojure.org/

promises. As an additional consequence of this emphasis
in the support of concurrent programming, Clojure is also
a Lisp dialect with a characteristic functional flavour that
can be noticed in the use of immutable data types and lazy
sequences.

Another major characteristic of Clojure is the hosted nature
of the language. Two major implementations of Clojure
are currently being developed, one running on top of the
Java Virtual Machine (JVM) and the other built on top of
Microsoft’s Common Language Runtime (CLR).

The presence of a host language offers a mature platform for
the deployment of Clojure applications and makes available
for the Clojure programmer a big number of development
libraries. On the other hand, the host language imposes
restrictions and limitations in the current implementation
of the language, for instance, the lack of support for tail call
optimization in the Java platform makes mandatory the use
of the recur form to achieve proper tail recursion. It also
introduces a backdoor for the use of objects with mutable
state in Clojure’s purely functional programming model.

One programming area where the hosted nature of Clojure
plays an important role is in the application field of dis-
tributed computing. Clojure abstractions for concurrency
can only be used to coordinate execution threads inside a sin-
gle node since there is no native support in the language for
distributed programming abstractions. The current agree-
ment in the Clojure’s developers and users community is
that support for distributed computing must be achieved
using native features of the hosted language platform like
Java RMI and Java Spaces or cross platform solutions like
messages queue systems2.

In this article, Jobim3, an actors[1] library for Clojure is in-
troduced. Jobim is modeled after Erlang’s Open Telecom
Platform (OTP)4 platform trying to offer a set of primitives
suitable for writing distributed applications in a functional
and reliable way. Jobim has been written as an extension to
Clojure that introduces the actor paradigm as a library, in
the same vein of other extensions for Lisp dialects like Ter-
mite for Scheme [6]. Jobim, as Clojure itself, takes advan-
tage of the hosted platform where the language is executed.

2http://groups.google.com/group/clojure/browse thread/
thread/38924bdb1ab63c60/731c5109c59b99af
3https://github.com/antoniogarrote/jobim
4http://www.erlang.org/
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Figure 1: Exchange of messages between actors

It is defined on top of some well known framework and
libraries. In particular, Jobim uses Apache’s ZooKeeper5

project to build distributed data structures that can be mod-
ified concurrently by actors being executed in different nodes
of a Jobim cluster. It also defines an abstraction layer on
top of the communication mechanism used by the different
nodes in the Jobim application that can be implemented us-
ing different communication frameworks. Jobim currently
supports two implementations, one defined on top of Rab-
bitMQ6 AMQP7 compliant message broker and another one
built on top of the ZeroMQ8 sockets layer.

2. JOBIM ACTORS MODEL
Jobim actors model has been designed after Erlang processes
[3]. The core of this model is formed by a single abstraction,
the actor, encapsulating a Clojure function, and three forms
for creating actors, sending messages to actors and receiving
messages.

Each actor being executed in a Jobim cluster has a glob-
ally unique PID that can be used by any other actor to send
messages to that actor. PIDs are generated in the process of
creating a new actor using the spawn form. This function re-
turns the PID of the newly created actor. PIDs are just Java
String objects, and can be sent inside messages exchanged
by actors in different cluster nodes, but they identifies un-
equivocally the node where the agent is being executed. The
function self can be used by an actor to retrieve the PID
associated to itself.

When an actor starts its execution, a message-box for the
actor is created and it is associated to the actor PID. An
actor can send a message to any other actor providing the
destination actor PID as an argument to the function send!.
When a new message for the actor arrives at the communi-
cation layer of a Jobim node, the message is extracted and
it is placed in the message-box for that actor, as shown in
figure 1. Messages can be retrieved by the actor from the
message-box in FIFO order using consequent calls to the
receive form.

5http://hadoop.apache.org/zookeeper/
6http://www.rabbitmq.com/
7http://www.amqp.org
8http://www.zeromq.org/

Sometimes, it is convenient to offer a well known name for
an actor in an application. This can be accomplished reg-
istering a PID with an associated text handler using the
function register-name. When an actor registers a PID in
a node of the cluster, the name can be immediately resolved
to an unique process PID in any other node of the cluster
using the form resolve-name. Names for PIDs cannot be
registered twice. Agents can check the already registered
names using the form registered-names. When an agent
finishes its execution, the name becomes available again for
any other agent to register.

Jobim actors are executed inside nodes. Each node is iden-
tified by an unique node ID generated when the node boot-
straps and a provided node name. Actors can request the
execution of a function with certain arguments in a remote
node using the rpc-call and rpc-blocking-call forms.
These forms receive the function to be executed, the argu-
ments for the function and the node ID where the function
must be executed. A list of available nodes can be obtained
with the nodes function and node names can be mapped to
node IDs using the resolve-node-name form. These forms
are especially useful when spawning new actors in remote
nodes.

Another aspect of Jobim actors taken directly from Erlang
processes is the support for the concept of linked actors.
Any couple of Jobim actors can be linked using the link

form. Links are bidirectional, and can be initiated by any
party. Once two actors have been linked, any exception
interrupting the execution thread of one of the actors will
originate a special signal message with value :link-broken
and the failed agent PID to be inserted in the other linked
actor message box. This actor can try to handle the failure,
restarting the failed process or fail itself with another excep-
tion. This new failure will be transmitted to any other linked
actor conforming a chain of failed actors. This mechanism
for handling distributed failing processes using a hierarchical
tree of linked processes is known in Erlang as a supervision
tree. Actors in a tree can try to recover from errors in actors
placed under that process node. If the agent cannot handle
the error, it can fail itself dispatching the error upwards in
the supervision tree.

3. ZOOKEEPER AS COORDINATION MECH-
ANISM FOR JOBIM NODES

In order to work properly, certain events in the Jobim cluster
need to be notified to all nodes in the cluster, for example
a network partition failure, and some nodes must use a co-
ordination mechanism so a distributed application can be
executed consistently across the cluster.

Apache’s ZooKeeper project, a subproject in Apache’s Hadoop
MapReduce framework, is used by Jobim to achieve these
features. ZooKeeper’s basic functionality consists of main-
taining a distributed tree of data that clients connected to
ZooKeeper can modify atomically. Each of these modifica-
tions will be available for other clients in a consistent way.
Furthermore, clients can set watchers for certain nodes of the
distributed tree. Whenever a node in the distributed tree is
modified, all the clients that had set up a watcher for that
node will receive a notification. If a node in the ZooKeeper
tree is created as ephemeral that datum will only be stored in
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ZooKeeper as long as the node is connected and alive. If the
node is no longer available because it has been disconnected
from the ZooKeeper server or because of a network partition,
the ephemeral data in the tree will be removed. This basic
functionality can be used to build much more generic coordi-
nation primitives. Jobim implements two main functionali-
ties on top of ZooKeeper, a distributed register of nodes and
named actors, implemented as a distributed group member-
ship algorithm [5], and a 2 phase commit protocol (2PC) [2]
for linking processes.

The map of nodes with their identifiers and names is stored
in ZooKeeper so each node is notified each time a new node
enters or leaves the cluster. This register is implemented
as a membership group. New nodes join the group writing
their identifiers as ephemeral data in ZooKeeper and the
rest of nodes are notified of the event. In the same way,
a node can leave the group because of a disconnection or
network partition. As a consequence of the removal of the
associated ephemeral data in the ZooKeeper tree, the other
nodes in the group will be notified of the event. Nodes use
these notifications to maintain the current state of their local
agents consistent, for example, since the PID of an agent
identifies the node where it is being executed, nodes can
generate broken-link signals for all the local agents linked
to some agent being executed in the remote node.

The 2 phase commit protocol implemented on top of Zoo
Keeper is another important functionality that is used by
Jobim nodes when agreement is required to manipulate the
state of the distributed application. One of such examples
is the linking of two actors, when one actor starts a link to
a remote actor, the linking is only successful if both nodes
agree on it. If one node fails in committing in the 2PC
protocol or cancels it, a local error for the linking operation
is generated.

4. JOBIM PLUGGABLE COMMUNICATION
SERVICE

The communication service in a Jobim cluster deals with
two main tasks:

• Transforming Jobim node identifiers into network iden-
tifiers for the communication mechanism used

• Sending and receiving messages between nodes in the
cluster

The communication service in Jobim is defined in a generic
fashion using Clojure abstraction features. Two concrete im-
plementations of this abstract service are currently available,
one using RabbitMQ AMQP-compliant broker and another
one using ZeroMQ sockets layer.

The communication service is defined as a Clojure proto-
col, a set of abstract operations over a type, named Mes-

sagingService. This protocol defines two methods, pub-

lish receiving a message with a destination node to be
send, and set-messages-queue that receives an object of
the Queue Java type where the communication layer will
store the incoming messages to the node. Finally, a Clo-
jure multimethod named make-messaging-service creates

a new value of the concrete communication service requested
in the arguments of the multimethod.

The RabbitMQ implementation creates a new AMQP ex-
change in the RabbitMQ message broker for each node,
named after the node ID. Additionally it connects a new
queue for the node to the AMQP exchange with a well known
binding key. When sending a message, the communication
layer of a node can generate the name of the exchange for any
other node and thus, send the message to the right exchange.
RabbitMQ will route the message from the exchange to the
only queue connected to that exchange. The communica-
tion layer of the target node will receive the messages from
the AMQP queue and place them into the Java Queue ob-
ject provided by the Jobim node in the set-messages-queue
function.

The ZeroMQ implementation retrieves the IP and protocol
to establish a connection to the remote ZMQ downstream
socket from the node table stored in ZooKeeper. In the
receiving node, a Java thread is blocked awaiting messages
from the target ZMQ socket and inserting them into the Java
Queue object passed as an argument in the set-messages-

queue form.

The communication layer to use can be set up in the con-
figuration of the Jobim node. New types of communication
services can be used in Jobim adding a new Clojure im-
plementation for the MessagingService protocol and the
make-messaging-service multimethod.

5. EVENTED ACTORS
Jobim actors created using the spawn form create a new
Java thread in the Java VM. Each new thread consumes a
considerable amount of computational resources in the JVM
and can become a problem if a big number of threads are
created in a single application. Applications created using
the Actors programming model rely on the creation of a big
number of actors. As an example, a small Erlang applica-
tion can create thousand of lightweight Erlang processes and
performance testing in Erlang has reported successful exe-
cution with as much as 20 million processes 9. In order to
allow the creation of a big number of actors in Jobim, an al-
ternative kind of actors, called evented actors, are available.
Evented actors in Jobim are based on similar solutions[7] for
implementing actor based libraries in JVM based languages
like Scala10.

Multiple evented actors are executed by a single execution
thread using the reactor [4] design pattern. In the reactor
design pattern, different work units share the same execu-
tion thread returning the execution control to a multiplexer
thread, while they await for an interesting event to occur.
The multiplexer retrieves the next event happening in the
reactor and passes the control to the associated multiplexed
thread.

The evented actors API in Jobim offers alternative forms
to the spawn and receive forms named spawn-evented and

9http://groups.google.com/group/comp.lang.functional/
msg/33b7a62afb727a4f?dmode=source

10http://www.scala-lang.org/
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react. The first one creates a new evented actor while the
later interrupts the execution of the actor and returns the
control to the multiplexer until an event for this actor ar-
rives. Additional forms like react-loop and react-recur

are alternatives to Clojure loop and recur that allows to
return the control to the multiplexer thread. The listing 1
shows a very simple actor implemented using a threaded and
an equivalent evented actor.

(defn ping []
(loop [[from data] (receive )]

(do (send! from (str "pong:" data))
(recur (receive )))))

(defn ping-evented []
(react-loop []

(react [[from data]]
(do (send! from (str "pong:" data))

(react-recur )))))

Listing 1: evented and non evented ping actor

Nevertheless, evented actors are a workaround for a fun-
damental limitation in the Java platform. Erlang process
dispatcher can execute processes in a preemptive manner,
assigning a limited number of reductions to a lightweight
process and then interrupting its execution and starting the
execution of a different process. Evented actors cannot be
dispatched preemptively by the multiplexer thread and must
rely in the cooperation of the evented functions, to allow the
execution of multiple evented actors. If a Jobim evented ac-
tor includes an infinite loop in its code, it will block the exe-
cution of any other evented actor in that multiplexer thread.
This is also true for blocking IO actions. To deal with these
kind of actions, the form react-future can be used. This
form executes the heavy action in a separated Java thread
without blocking the reactor thread, and returns the result
emitting a special event to the evented actor.

6. GENERIC BEHAVIOURS
The problem of how to implement reusable distributed com-
ponents on top of the actors programming model has been
addressed in Erlang using abstractions known as behaviours.
Behaviours encapsulate related functionality in a distributed
actors system in a similar fashion to classes in an object ori-
ented model.

Jobim implements the idea of behaviours but uses the Clo-
jure concept of protocol to define them. A behaviour in
Jobim is defined as a Clojure protocol that must be im-
plemented. This mechanism hides all the actor creation,
or sending and reception of messages from the implementer
that must only write simple functions with well defined se-
mantics.

Currently, behaviors like supervisor, finite state machine,
event manager and generic server are supported, providing
the same interface of their Erlang equivalents.

7. CONCLUSIONS AND FUTURE WORK
Jobim tries to offer an alternative to build distributed ap-
plications using pure Clojure code. As Clojure itself, it is
built on top of well proved libraries offered by the host-
ing Java platform like ZooKeeper. It also draws inspiration

and the underlying programming model from Erlang’s OTP
platform.

Nevertheless, Jobim is still at a very early stage of develop-
ment and many important features offered by Erlang as a
platform are missing. One of these features, is the concept
of applications as self contained units that can be easily de-
ployed and started in a cluster. Jobim already supports the
concept of supervisor tree, but lacks the capacity distribut-
ing, starting and stopping this supervisor tree in a cluster-
wide fashion. Some promising related work using Java tech-
nologies like OSGI has been done, but issues with the current
implementation of Clojure’s class-loader has prevented any
further advances.

Jobim also needs to improve its performance, being one of
the current bottlenecks the employ of the Java standard
serialization mechanism. Java serialization has important
performance issues but makes possible to serialize most of
Clojure types. Pluggable support for more efficient serial-
ization mechanisms can boost the performance of Jobim in
particular application use-cases.

Finally, Jobim implementation of Erlang’s actor model of-
fers a very generic computational model that can be adapted
to build other distributed programming models for different
application domains. As an example a Petri networks pro-
cessing library has been built using on top of Jobim11. Other
libraries for other domains, like Complex Event Processing,
could also be easily be implemented.
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ABSTRACT
SICL is a project that aims to supply building blocks for im-
plementers of Common Lisp systems so that they can con-
centrate on implementation-specific aspects of their systems
such as data representation, memory management, and code
optimizations, while relying on SICL components for im-
plementation independent “library” code such as functions
on sequences, the format function, the reader, or standard
macros such as loop.

While the emphasis of SICL modules is on portability, we
are also concerned with other characteristics. In particular,
we want SICL modules to be written so as to make it as easy
as possible to debug code that uses them. Furthermore we
want SICL modules to be competitive with implementation-
specific code with respect to performance. Finally, we want
the code for SICL modules to be easy to read and under-
stand.

Currently, a single module (most of the conses dictionary)
has been released, but several other modules are near com-
plete or contain a substantial fraction of the final code, for
instance the format function, the sequence dictionary, iter-
ation macros, and conditional macros.

SICL building blocks are distributed according to a license
that is equivalent to “public domain”.

1. INTRODUCTION
The main purpose of the SICL project is to provide build-
ing blocks (or modules) for implementers of Common Lisp
systems. By providing modules that can be implemented
portably whenever possible, and by minimizing dependen-
cies on specific implementation details whenever this gen-
erality does not harm performance, SICL will make it less

daunting to undertake the task of implementing a new Com-
mon Lisp system, which we hope will encourage experimen-
tation with new implementation strategies that might im-
prove aspects like performance or debuggability compared
to existing systems.

Initially, SICL was meant to be a project with the purpose
of realizing a new Common Lisp implementation, mainly
in order to improve facilities provided to programmers for
debugging their code. However, as mentioned above, imple-
menting a complete Common Lisp system from scratch is
indeed a very daunting task.

By changing the focus of the project into providing building
blocks for other implementations, we obtain several advan-
tages:

• The code must be written to be independent of a par-
ticular implementation. Not only does this make the
code useful in other implementations, but in a hypo-
thetical new implementation, it decreases the amount
of implementation-specific code, making it easier to
modify low-level implementation strategies later.

• It divides the effort into more manageable chunks, with
clear intermediate goals.

In the remaining sections of this paper we highlight some of
the distinguishing characteristics of SICL. We also give the
status of the project and suggest priorities for further work.

2. SPECIAL VERSIONS AND COMPILER
MACROS

Many Common Lisp functions take optional and keyword
parameters. For such functions, SICL will provide special
versions for common combinations of arguments, especially
in cases where doing so matters to performance.

For instance, it might be common to supply eq as the :test

for some sequence function. While Lisp implementation
might be able to inline such a call and ultimately the call
to eq as well, we do not assume that the implementation
is capable of doing that. An implementation that does not
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inline such a call might have a performance penalty associ-
ated with overhead required by the function-call protocol,
especially when the function is as simple as eq. Instead of
assuming such capabilities of the implementation, we supply
special versions of such functions where it is known that eq

is the test to be used. In the special version, eq is called
directly (as opposed to via funcall) making it more likely
that it will be inlined by the compiler.

With special versions for common combinations of argu-
ments, the main function is reduced to doing argument pars-
ing, some error checking and calling one of the specialized
versions. By supplying compiler macros for calls where the
specialized version to be called can be determined at com-
pile time, we can eliminate argument parsing and most error
checking as well.

It is interesting to observe that since compiler macros can-
not in general inspect the type of the arguments (as deter-
mined by the declarations and/or type inference) of a call,
the specialized version that is ultimately called in place of
a sequence function must start by testing the exact type
of the sequence. When this can be determined at compile
time, this test will likely be elided by the compiler, in later
stages. Many Common Lisp implementations provide access
to environments that contain type information, that would
eliminate this problem, but using such functions would re-
duce portability, and the potential gain in performance is
likely small, at least for the sequence functions.

Providing compiler macros for sequence functions and func-
tions on lists is advantageous only for short sequences. For
long sequences, argument parsing represents a vanishingly
small part of the total execution time. However, we be-
lieve that it is common that sequence functions are used
on short sequences, and by providing good performance in
those cases as well, we encourage their use in such cases,
often with clearer and more concise code as a result.

In some cases, compiler macros might be able to choose a
better implementation strategy for the function in question.
An example of this situation is the butlast function, where
an optional parameter determines how many cons cells to
return. The default value for this parameter is 1. For that
special case, traversing the list with a single pointer, check-
ing the type of the cdr, is a valid implementation strategy.
In the general case, two pointers are required, each advanc-
ing by cdr.

3. TRAVERSING A LIST FROM THE END
Certain functions on sequences take a :from-end keyword
argument indicating that the sequence should be traversed
from the end. When the sequence is a list, many different
possible solutions have problems:

• One solution is to use recursion and to process the el-
ements during backtracking. This solution is problem-
atic because available stack space might be exhausted
for long lists.

• Another solution is to reverse the list destructively,
process the elements, and then reverse the result. This

solution is unappealing in the presence of threads be-
cause other threads may find that the list structure is
temporarily destroyed.

• Yet another possibility is to allocate temporary space,
say in the form of a vector or a list with the elements in
reverse order, to copy the elements to the temporary
space, and to process them from there. This solution
is unappealing because of the additional memory re-
quired, which can be significant if the list is large. It
also prevents destructive modifications to the list such
as one might want for the function delete.

• Certain functions do not require the traversal to be
from the end of the sequence, for instance find, which
only requires that the last element that passes the
test be returned. A solution that takes advantage of
this possibility consists of traversing the list from the
start while remembering the last element that passed
the test, and returning it at the end. This solution
is unappealing because it might apply the :test (or
:test-not) and the :key functions many more times
than required to determine the result, and when these
functions are costly, performance might be lower than
expected.

Other functions, such as count do require the elements
to be processed from the end, so a general solution to
this problem must be found.

The solution adopted by SICL is to trade stack space for
multiple traversals of the list as follows:

1. The length of the list is first computed by an initial
traversal.

2. If the length of the list is below some maximum n al-
lowed, then it is traversed according to the first method
above, using recursion and backtracking.

3. If the list is too long, it is divided into chunks of length
n. The list is traversed according to the same method,
but by advancing by n elements at a time.

This method is a good trade-off in most cases:

• The stack space used can be bounded (at least if an
upper bound on the address space is assumed).

• Computing the nthcdr of a list is a relatively cheap
operation, and could be made cheaper by realizing that
most of the uses do not need to test for the end of the
list. Though cache performance might be a problem
in some cases.

• In practice, more than two traversals are only required
for very long lists, or when implementations have seri-
ous restrictions on the recursion depth allowed. There-
fore, in most cases, our solution is no worse than the
alternative solutions suggested above.
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4. INTERNATIONALIZATION
While it is probably the case that most Lisp programmers
are able to read English, we believe that for some non-native
speakers of English who want to learn to program in Lisp
the combination of a foreign language and unfamiliar ter-
minology can be a serious obstacle to understanding error
messages and documentation strings.

For that reason, we intend to provide the mechanisms re-
quired for internationalization of condition reporting and
documentation strings (see below). These mechanisms must
obviously be transparent, so that implementations using SICL
building blocks remain standard conforming. The exact
mechanisms to be used have yet to be determined.

5. DOCUMENTATION STRINGS
Conventional wisdom dictates that documentation strings
should be physically close to the entity that is documented,
and Common Lisp certainly provides the mechanisms to be
used in this case.

However, we believe that this proximity is useful only if the
two are likely to evolve in parallel as a result of mainte-
nance. For a body of code implementing a standard that is
unlikely to evolve in any significant way, such as an imple-
mentation of Common Lisp, documentation strings in asso-
ciation with code are merely noise to the code maintainer.
We also believe that this proximity discourages the use of
complete and explanatory documentation strings, again be-
cause significant documentation strings represent noise to
the maintainer.

Furthermore, if internationalization is desired (see above),
then it might be better to separate the documentation strings
from the documented entities, and instead provide different
modules providing documentation strings for different lan-
guages. Common Lisp provides mechanisms for separating
the two as well, through the use of (setf documentation).

For SICL, we intend to provide documentation strings as
part of the distribution of each module for the entities in
that module. However, we also intend to provide a separate
module with documentation strings for all entities in the
standard, thus allowing implementations that simply want
to improve their documentation strings to do so without
otherwise using SICL code.

6. CONDITION REPORTING
Part of the reason for SICL was the desire for better con-
dition reporting, making it easier for developers to debug
their programs.

There are (at least) three reasons why some implementations
provide suboptimal condition reporting:

• The exact type of the condition signaled is too general
to provide an informative message. For instance, if a
improper list was given to a sequence function, then a
condition of type type-error might be signaled. But
the condition type type-error is too general for it to
be possible to indicate that the problem had to do with
an improper list.

• An error is often detected not by the standard function
that was directly called by the developer’s code, but
by some other standard function called by it. For in-
stance, a standard function on sequences might rely on
endp to signal an error when a non-nil atom is given.
Some implementations might then indicate that the
problem was detected by endp which was never explic-
itly called by the developer’s code, or they might not
indicate where the problem was detected at all.

• The condition reporters do not provide sufficiently ex-
plicit messages for the developer to immediately be
able to understand what is meant. The reason for
this might be similar to the reason why documentation
strings are sometimes uninformative, i.e., that they
represent noise to the implementer or the maintainer
of the Lisp system.

In SICL, we address these issues as follows:

• Since the standard allows for conditions signaled to be
more specific than the ones that are required, SICL
provides a multitude of such conditions that are spe-
cific to each situation, allowing better condition re-
porting, but also allowing an integrated development
environment to assist the user with further informa-
tion.

• An implementation of a standard function in SICL
cannot rely entirely on another standard function, or
another function used by several different standard
functions, to detect and signal an error. Instead, if
a standard function calls another function that might
signal an error, it must handle that condition, and re-
port a condition specific to it. Other standard func-
tions can be called without any condition handling
only if it is known that they cannot detect and signal
an error. This restriction allows SICL code to report
errors in terms of the standard function that was called
directly by client code.

• As with documentation strings, we separate condition
reporters from the definitions of the conditions them-
selves, and provide more explicit messages. These mes-
sages can be more explicit thanks to the fact that con-
ditions are specific, and the fact that it is known which
standard function was directly called from client code
when the problem was detected.

In the second item above, when a standard function F calls
G that might signal an error, it might be necessary for F to
establish a condition handler, which could be expensive in
terms of performance if the total amount of work to be done
by F is small. In that case, we use one of two solutions.
Either F contains code that tests that the condition cannot
be signaled by G, or G takes additional parameters allowing
it to signal a condition specific to F .

As with documentation strings, each SICL module will have
a set of associated condition reporters, but we also intend to
provide a separate module of condition reporters for imple-
menters who simply want to improve the messages emitted
when existing standard conditions are signaled.
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7. CODE UNDERSTANDABILITY
A secondary objective of SICL code is that it be easy to read
and understand. This objective naturally begs the ques-
tion “to whom?”. The target group should of course include
maintainers (including potential future maintainers) of the
code. We would like to include in this group a little wider au-
dience, so that programmers looking for information about
implementation strategies for Common Lisp systems could
read and learn from the code.

This goal is sometimes incompatible with the desire for high
performance, because high-performance code might be less
clear by necessity. We propose to compensate for this by
using extensive commenting in an almost “literate” coding
style. For application code, we would normally not advo-
cate this style because it may make perfective maintenance
harder, but perfective maintenance is less likely on code that
implements an existing standard.

Another direct consequence of this objective is that we de-
cided to avoid the use of macros for generating special ver-
sions of functions with many keyword arguments, such as
the sequence functions. Macros would make the code more
maintainable because of avoided code duplications, but at
the cost of making the code very hard to understand. Sev-
eral examples can be found for instance in the code that
implements the sequence functions in SBCL. We thus opted
to explicitly write out every special version of such functions.

8. CURRENT STATUS
At the moment, the following has been accomplished:

• The first module was released at the end of 2010. It is
an implementation of most functionality of the conses
dictionary of the HyperSpec. Performance is compa-
rable or better than corresponding functions in SBCL
(the system we use for our own development), and in
some cases defects in the SBCL code do not exist in the
SICL equivalent. For instance the standard requires
the butlast function to signal an error when given a
circular list, whereas SBCL goes into an infinite loop.

• A module containing implementations of standard con-
ditional macros (cond, when, unless, and, or, case,
etc.) is almost complete. More tests are required.

• A module containing implementations of standard it-
eration macros (dolist, dotimes, do, do*) is almost
complete. More tests are required.

• A module implementing format is almost complete.
Only floating-point printers remain to be implemented.
The implementation compiles the control string into
elementary operations.

• A module containing an implementation of the se-
quences dictionary is near complete. This was one
of the first modules that were being worked on, and
some conventions were established later, requiring sig-
nificant modifications of this module before a release.
As with the module for conses, performance is com-
parable to or better than corresponding functions of
SBCL.

• The implementation of the loop macro is able to do
syntax analysis and some code generation. More ex-
tensive semantic analysis and code generation remain
to be written.

• A partial implementation of read. This implementa-
tion provides special versions for common cases such
as when the standard readtable is used, and when the
input radix is 10. For the special versions, token pars-
ing is done at the same time as token accumulation,
making the reader fast. The reader also provides an
additional entry point that returns the form read as an
abstract syntax tree in the form of instances of classes
that contain not only the objects returned by the nor-
mal entry point, but also information about source lo-
cation. This additional entry point can be used by a
compiler that tracks source code location, and by other
tools requiring such functionality.

9. CONCLUSIONS AND FURTHER WORK
The SICL project allows us to revisit many parts of the
Common Lisp standard and examine existing implementa-
tions with respect to correctness, modularity, performance,
code understandability, and debuggability of client code. By
doing this in manageable chunks, we obtain more humane
milestones the result of which can be used directly to im-
prove existing implementations or to provide “library” code
for new implementations.

Existing implementations undoubtedly contain code that
could be extracted, adapted to the SICL requirements and
become part of SICL, and we do not exclude this method
of creating SICL modules. A potential problem might be
the license of existing code. As we already mentioned, we
believe that SICL code must be distributed with a license
equivalent to “public domain” in order to be widely adopted.

Currently few people are actively working on the project,
but by dividing the code into independent modules, we fa-
cilitate working in parallel and thus make it possible to have
additional participants in the future.

In terms of future work, aside from “finish the remaining
modules”, there are some interesting questions that need
further consideration. One such question concerns boot-
strapping issues. We currently have not thought through
all possible use cases for each SICL module, and it is possi-
ble that different use cases have conflicting requirements.

For instance, the sequences module uses the loop macro.
When used in a new system, the sequences module will likely
be compiled on a bootstrap compiler, in which case the loop
macro might use sequence functions in expanded code, which
clearly will not work. The SICL loop macro will only use
low-level primitives such as tagbody, so when the SICL loop

macro is used as well, this will not be a problem. But we
do not want it to be a prerequisite to use the SICL loop

macro in order to use the SICL sequence functions. One way
of breaking this dependence cycle would be to distribute a
macro-expanded version of the sequences module. Similar
issues exist with other SICL modules, and a complete anal-
ysis of the possible use cases is required, including a list of
potential bootstrapping problems.
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Another issue that needs further consideration has to do
with trade-offs in implementations that might use SICL mod-
ules. Existing SICL modules have been written with execution-
time in mind, and no attempt has been made to minimize
code size. It might be interesting for SICL to provide alter-
native modules for implementations with different trade-offs.
In particular a version that is specifically written with code
size in mind might be significantly easier to test than current
SICL modules with many special versions of some functions,
all of which need to be tested. Furthermore, a “small” ver-
sion of a module could be used to test a “fast” version of
the same module by comparing results for a large number of
combinations of inputs for the two versions, as opposed to
manually enumerate expected results.
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ABSTRACT
In this report, I want to sketch how, during the years 2006-
2010, I used Common Lisp to reduce administrative tasks
significantly for me and my collaborators. I will stress sev-
eral important steps which may be important for similar
projects. Finally, I will hazard an outlook as to how the
future may look for this special application.
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J.1 [Administrative Data Processing]: Education

General Terms
Management, Legal aspects, Reliability, Security

Keywords
Course Administration, Web Application, Data Protection

1. INTRODUCTION
Common Lisp is a very powerful programming language.
Unfortunately, it is not used much in the software industry
so that finding a programming job using Common Lisp is
usually not easy. Alternatives are to create and sell your
own Common Lisp products or to offer Common Lisp con-
sulting. Both can be successful, as several enterprises show,
but you would need to be a very good programmer to de-
velop an entire application in Common Lisp from scratch —
even if you can leverage a lot of work from external libraries.
You probably also need a rather deep knowledge of the appli-
cation domain or, alternatively, cooperation partners which
complicates the whole project.

It is much easier and less risky to use Common Lisp for solv-
ing problems which arise in your everyday non-programming
job. There are enormous advantages: first, cooperation
partners are not essential, because you yourself are an ex-
pert in the domain of application. Second, you can expect to
profit from the project from the beginning. Third, and most

important, you can rely on a steady income independently
of the project.

I have been in this fortunate situation for the last 4-5 years.
Since August 2006, I have been employed at the University
of Karlsruhe as an “Akademischer Rat” which is more or less
equivalent to a“lecturer” in the English-speaking world. It is
a permanent position, it involves giving lectures and also su-
pervising diploma and doctoral theses. However, compared
with a professor, I have additional administrative duties.

In this report, I want to sketch how, during those years,
I used Common Lisp to reduce administrative tasks signif-
icantly for me and others. I will stress several important
steps which may be important for similar projects. Finally,
I will hazard an outlook as to how the future may look for
this special application.

2. REQUIREMENTS
When I started to work at the University of Karlsruhe in
August 2006, my first duty was not giving lectures. Instead,
I was responsible for supervising exercises and managing tu-
torials run by student assistants. The University of Karl-
sruhe1 is a technical university which means that we have
engineering subjects, and teaching Mathematics to engineer-
ing students represents a significant part of the overall tasks
of our Math department. This usually means courses with
a large number of participants and, correspondingly, the or-
ganisation involved several time-consuming and boring tasks
(at least at that time). A non-exhaustive list includes the
following tasks:

1. Tutors have to be recruited. Seminar rooms for the
tutorials as well as rooms and dates for exams have to
be organized.

2. Students have to be registered and then divided up
into reasonably sized tutorials (20–30 per tutorial).

3. Exercise sheets together with solutions have to be cre-
ated and distributed.

4. E-mail correspondence and personal discussions with
the tutors and students have to be carried out.

5. Exercise scores have to be collected from the tutors.

1In 2009, the University of Karlsruhe merged with a DFG
Research Center Karlsruhe to form the KIT.
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6. Exams have to be created and corrected, the results
have to be published.

7. The webpage for the course has to be created and kept
up to date.

8. The students’ scores have to be passed to the univer-
sity administration, either in the form of certificates
on paper (formerly), or online (now).

Items 2,3,4,5,6 were especially time-consuming.

Early in 2007, it looked as if this would become even worse
because I faced having to organize the exercises for the sum-
mer term for an even larger course with about 400 partic-
ipants (Numerical Mathematics for Computer Scientists).
However, a little relief could be found in a set of PHP scripts
which allowed students to register and those correcting the
exercises to enter scores in a database, so that it was not
necessary to collect them by e-mail.

Nevertheless, I decided at this point not to use these existing
scripts but to start a Common Lisp application from scratch.
There were several reasons:

1. The PHP scripts were not written by professionals, and
their quality was doubtful (as far as I could judge).

2. The functionality was partially acceptable (exercise
scores could be entered), partially annoying (every week,
some students asked for forgotten passwords), and par-
tially missing. It was therefore clear that I would have
to develop the scripts further if I wanted use them.

3. The copyright of the scripts was doubtful; probably
it lay either with the institute or the university, but
nothing was stated in the code and the programmer
had already left the university.

Starting from scratch therefore had significant advantages.
I could write Common Lisp, I could keep my own standards
for the code, and the complete code was under my control
as far as is possible.

3. FIRST IMPLEMENTATION
Nevertheless, there were problems. The main problem was
that I had little experience with web applications and databases.
Furthermore, time was relatively short, because I had only
two months before the start of the courses.

At this point, I decided to get professional help and asked
Edi Weitz [8], who is a well-known and impressively skilled
Common Lisp programmer. He is the author of several im-
portant libraries including his own webserver (Hunchentoot)
and the quality of his work is well-known throughout the
Common Lisp community. Therefore, I asked him to write
a prototype web application for me under the BSD license
(which would allow me to combine it with non-BSD code of
my own) with the sole functionality of letting students regis-
ter and change their personal data. Edi did indeed manage
to program this in a few hours to my complete satisfaction.

This code gave me something to start from and there was
still enough time to improve it to a point where it had
more functionality than the PHP script. I incorporated sev-
eral improvements, especially registering with an e-mail con-
firmation, automatic handling of forgotten passwords (the
password was e-mailed back if an e-mail address to be en-
tered agreed with the one in the database), choice of a pre-
ferred tutorial, and the management of exercises. I also
combined this with GNU Mailman in such a way that ev-
ery registered student was automatically enroled in a course
mailing list.

When I used the application in this form for the first time
in the summer term of 2007, it had eliminated or allevi-
ated several of the tasks described above: I did not have to
administer the exercise scores any more, I had to write far
fewer e-mails than before, and I had also a function which
divided students up into tutorial groups. I had no adminis-
trative interface at that time, but, since I was the only user
and had access to both the Common Lisp level as well as
the database level (Postgresql), this was not a real problem.

4. ADAPTATION
After a reasonable basic functionality was working, I could
slowly and incrementally improve the application. The most
important change was to incorporate an administrator web
interface which allowed others to use it as well. Smaller
changes included the handling of exams and certificates.
For the latter, a secretary role was introduced which could
reprint lost certificates—something which I myself had had
to do before.

As Common Lisp allows changes to be incorporated often
without shutting down the server, my application suffered
almost no downtime while steadily improving. Good prac-
tice was to test each change rather carefully offline on an-
other computer before synchronizing the source code with
the server host, then attaching to and updating the web
server. In the rare cases where I anticipated problems dur-
ing such an update, I usually waited until the weekend or
late night to do an update including a complete restart of the
web server. It was also an important advantage that I had
already installed an e-mail notification service quite early
which sent me every error which was caught by Hunchen-
toot.

Next, I knew that many people set much store by the ap-
pearance of a website. Therefore, in January 2008, I asked a
cousin [5] who specializes in art to design a logo. I combined
it with a style sheet I had from an earlier application so that
the whole application looked quite nice.

In 2009, I carried out another rather fundamental change.
For some time, I had been unhappy with GNU Mailman. It
was certainly very flexible, but it also introduced another
level of complexity for users when they wanted to configure
one option or another. Since I had all the student’s e-mails in
my database anyway, I searched for a simpler, independent
solution.

I searched the web and found a software which indeed im-
plemented a simple mail transfer agent (smta) in Common
Lisp. It was written by Walter C. Pelissero [6], a software
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Figure 1: Architecture of the courses system.

consultant living near Frankfurt (Germany), whom I asked
per E-Mail if he would consider it a reasonable choice for
creating a mail distribution service. He answered that this
program was more an exercise than a production quality
MTA, and proposed to use his (LGPLed) milter2 software
Demyltify instead which allows for manipulating mail mes-
sages in the Sendmail and Postfix MTAs. I asked him if I
could pay him for writing me some code, but he gracefully
provided me with a small routine free of charge. Therefore,
in the autumn of 2009, I became independent of GNU Mail-
man, and the whole system looked as shown in Fig. 1.

5. DATA PROTECTION
In March 2008, I sent a mail to my faculty in which I told
them about my webservice. They reacted and about a month
later, there was a meeting where this issue was discussed.
However, the reaction was not very encouraging. Some peo-
ple had similar web services and did not want to change.
Others were afraid because of data protection issues. There
were also plans for a campus-wide management system which,
in the ideal case, would also have similar functionality. In
the end, they decided not to establish another system and to
wait for the campus management system which would solve
all problems.

This was a small setback, but several positive elements can
be seen in that outcome. First, I could devote more time
to making the system better. Second, if the faculty was not
interested in the software, I was free to do whatever I wanted
with it without taking other interests into account. Third,
my attention was drawn to the very important issue of data
protection.

Even before that meeting I had not been careless about this
issue. For example, I had very soon switched to the en-
crypted https protocol. Therefore, I could always argue that
my web service improved on the previous situation where
data was often exchanged using unencrypted e-mails. How-
ever, if I really wanted to offer a service to others, I had
to take another scale into account. The main question was
how it was possible to offer such services at all in a legally
correct way.

So I started looking around and found (after some detours)
that software used at the University of Karlsruhe had to be
registered in a certain list which was then synchronized with
an institution (“Datenschutzbeauftragter”) of the local state
government (Baden-Württemberg). To be registered in that
list, my software had to be examined by experts from an or-
ganisation called ZENDAS [9]. So I contacted ZENDAS and

2A Milter is a mail filter for Sendmail an Postfix.

asked for an examination of my software. This turned out
to be a really agreeable and stimulating experience, mainly
because the people there were very competent. They did
not go so far as to examine my source code, but they tested
an administrator account I had to make for them. In gen-
eral, they were really satisfied with my server (saying that
they were not used to that quality), and also gave me sev-
eral hints and orders for improvements (for example, an im-
proved password management). So, after some further de-
tours because of a misunderstanding of mine, my server was
taken into this list of “permissible software”.

6. INTEGRATION
After the data protection issue was resolved, I could take a
step towards a better integration into the university software
infrastructure. One of the main inconveniences was that
students had to register with their personal data (name and
e-mail) on my server although they already had an university
account with all the necessary information. This was an
inconvenience which was at the same time an impediment
to the further adaption of my service.

Towards the end of 2009, I learned that the KIT (the suc-
cessor of the University of Karlsruhe) offered a SSO (single-
sign-on) service, which means that a “service provider” (in
this case my web service) can redirect requests to an “iden-
tity provider”(at the KIT computing centre) which performs
the authentification and directs the request back again hav-
ing augmented the necessary data (identification number,
name, e-mail address). In 2010, I started to explore this
further. First I asked Edi Weitz again, if he could help me
there. His answer was that a whole Common Lisp solution
would be too much work, but that I might be able to lever-
age the Shibboleth SSO-module from the Apache webserver.
Indeed, this turned out to be the way to go. The people from
the KIT computing centre were very competent and help-
ful, so that this integration turned out to be much less work
than I had expected it to be.

7. GROWTH
During 2008 and 2009, several people from my institute used
the web service. However, the number of users stayed rel-
atively constant, one reason being that I did not advertise
it, since I had to resolve the data protection issues discussed
above. However, in the spring of 2010, I received a request
from the faculty whether my web service could help them
with the registration/distribution of students to seminars.
The inclusion of this feature was relatively easy, because it
was quite similar to the choice/distribution for tutorials and,
since it worked without any problems, it did save both our
students and our staff a lot of discomfort.

Now, in the winter term 2010/2011, after the implementa-
tion of the SSO authentification mentioned above, two peo-
ple from other institutes asked for accounts to administer
their courses (again, several hundred students). After giv-
ing them a short introduction together with a manual, I
have not heard any questions or complaints from them, and
it looks as if everything works without any problems. For
the summer term 2011, two more courses have already asked
to be incorporated.

Thus, a steady growth is quite possible as more and more
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people learn about the benefits of this service.

8. BENEFITS OF USING LISP
Was using Common Lisp essential for creating this system?
Probably not, it was used mainly because I personally know
it and like it. On the other hand, there are at least sev-
eral characteristics of the underlying task which made Lisp
highly suitable:

• The specification changed with time, and Common
Lisp allowed programming in an incremental style with-
out the need to “throw one version away”.

• Some subproblems (like the optimal distribution of
students to proseminars or the presentation of simpli-
fied interfaces depending on the course) are basically
AI problems for which Common Lisp is well suited.

• Having to serve a lot of clients, the system has to be as
fail-safe as possible while still allowing change. Here,
Common Lisp helps a lot with its elaborate exception
handling, and the opportunity of loading patches into
the running system.

• The environment is different from place to place so
that the perfect system has to adapt to a large range
of requirements and tastes. The extreme flexibility of
Common Lisp is of help here. For example, I still allow
certificate criteria to be specified using a Common Lisp
subset.

9. FURTHER DEVELOPMENTS
There are several ways in which the service can be extended.
For example, exercises could be extracted from a central
database and combined into exercise sheets. Another fea-
ture would be to incorporate an easy transfer of student
grades to the university database. One could also extend it
towards an e-learning application, or towards a more com-
plete campus management solution. However, this is ques-
tionable, because well-established solutions already exist for
these tasks (see next section).

10. RELATED SOFTWARE
Since there are a lot of universities doing similar tasks, it is
not surprising that several related systems exist.

The closest is probably a commercial system called Rosella
[2], which I learned about last year from a brochure. Then
educational software like ILIAS [3] or Moodle [7] can be
configured to do similar things. However, the configuration
of these very large systems is far from easy, and they usually
need extension modules to handle certain local features. Fi-
nally, the functionality partly overlaps with whole campus
management systems like [1].

11. THE FUTURE
Will this web service be used at some time throughout the
Faculty of Mathematics or maybe even across KIT? Maybe,
but this depends very much on the campus management sys-
tem currently being implemented. A 100-page specification
has been written, a public tender performed, and one of the

quotations was accepted. Now, I am looking forward to see-
ing when and in which form it will be delivered, and how
well it will handle our much smaller range of problems.

Another interesting question is whether there is any com-
mercial value in the software. The answer is surely yes,
because —as mentioned above— there is already the com-
mercial software Rosella [2] with a rather similar scope.
Therefore, I decided at least to reserve a web domain [4] for
my service. However, this is a difficult market, also because
of the abundance of choices mentioned in the previous sec-
tion. A possible niche might be to advertise the minimal
work for the staff, and also the handling of special features
like the distribution of students to seminars.
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ABSTRACT
The idea of applying map and filter functions on consecutive
sublists instead of on individual list elements is discussed and
developed in this paper. A non-empty, consecutive sublist
is called a bite. Both map and filter functions accept a
function parameter - a bite function - which is responsible
for returning a prefix bite of a list. We develop families of
bite functions via a collection of higher-order bite generators.
On top of the bite generators, a number of bite mapping
and bite filtering functions are introduced. We illustrate the
usefulness of bite mapping and filtering via examples drawn
from a functional programming library that processes music,
represented as Standard MIDI Files.

Categories and Subject Descriptors
D.1.1 [Applicative (Functional) Programming]: Lisp,
Scheme; E.1 [Data structures]: Lists; H.5.5 [Sound and
Music Computing]: Systems

1. INTRODUCTION
Mapping and filtering represent some of the classical higher-
order functions on lists, together with similar functions such
as reduction functions. Both the classical mapping and fil-
tering functions deal with individual elements of a list. A
mapping function applies a function to each individual ele-
ment of the list, and it returns the list of these applications.
A filter function selects those elements on which a predi-
cate is fulfilled. The predicate of a filtering function is also
applied on each individual element of the list.

The idea described in this paper is to apply mapping and
filtering on sublists of a list. The Common Lisp function
maplist, which applies a given function on successive tails
of a list, is a simple example of a mapping function that
belongs to this genre. In this context, a sublist of a list L=
(e1 e2 ... en) is a non-empty consecutive part of L, (ei ...
ej), where i ≤ j, i ≥ 1, and j ≤ n. It is easy to see that for
a list L of length n, there are (n+ 1)(n/2) such sublists.

Although it is possible, and maybe even useful, to map and
filter all possible sublists of a list, most of the work in this
paper will deal with map and filter functions that process
mutually disjoint sublists that partition the list. In this
context, a disjoint partitioning of a list L = (e1 e2 ... en)
is formed by L1 = (ei1 ... ej1), L2 = (ei2 ... ej2), ..., Lk =
(eik ... ejk ) where k ≤ n, i1 = 1, jk = n, jm = im+1 for
1 ≤ m ≤ k − 1. In order to simplify the vocabulary, each
non-empty sublist in a disjoint partitioning will be called a
bite. The bites L1 ... Lk of a list L = (e1 e2 ... en) are all
non-empty, and when they are appended the result is L.

The development on bites of lists has been motivated by our
previous work on MIDI music programming in Scheme [9].
A piece of music, represented as a MIDI file, consists of a
list of discrete MIDI events. The MIDI list of a typical song
consists of thousands of such events. When a list of MIDI
events is captured from a MIDI instrument, the first job
is typically to impose structure on the list. The structure
will be a music-related division consisting of units, such as
bars/measures, song lines, song verses, or chord sequences.
The capturing of music related structures in a list of MIDI
events was the starting point of the work described in this
paper.

In addition to the music-related application area, we will
also mention an example of another area in which mapping
and filtering of sublists may be useful. Imagine a long list
of time-stamped meteorological data objects that describes
the weather conditions during a long period of time. Each
object may contain information about temperature, air pres-
sure, rain since last reading, and other similar data. In or-
der to extract characteristics about weather conditions at
a more coarse-grained level, it may be relevant to partition
the list in sublists. These sublists may, for instance, cor-
respond to regular periods of time (days, weeks, month, or
years). Sublists with monotone progressions of the air pres-
sure or temperature could also be of interest. Both kinds of
sublists can be produced by the functions described in this
paper. Systematic search for (maybe overlapping) sublists
with certain more detailed properties is also an area which
is supported by functions in this work.

In Section 3 we present the higher-order mapping and filter-
ing functions, each of which rely on a bite function. When
applied to a list, a bite function returns a prefix of the
list. Prior to the discussion of the mapping and filtering
functions, we will in Section 2 introduce a collection of bite
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function generators. It turns out that these generated “bit-
ing functions” are the crucial part of the game. In Section 4
we discuss the bite generators relative to the motivating ex-
ample of this work (introducing structure in a list of MIDI
events). Section 5 contains a description of related work.
Section 6 presents our conclusions.

The mapping and filtering of sublists has been developed in
the context of the R5RS Scheme programming language [5].
Even though Scheme is dynamically typed, we will often de-
scribe the functions by means of statically typed signatures.

2. BITE GENERATORS
A bite function b is a function which takes a list of elements
as parameter, and returns a non-empty prefix of that list.
More precisely, a bite function returns a non-empty list pre-
fix when applied on a non-empty list. Thus, the signature of
a bite function b is List<E> → List<E> for some element
type E. Of convenience, and for generalization purposes, a
bite function return the empty list when applied on an empty
list.

It is usually straightforward to program a particular bite
function. In this section we will deal with families of similar
bite functions, as generated by higher-order bite generating
functions.

A particularly simple bite generator is (bite-of-length n),
which returns a function that takes a bite of length n:

((bite-of-length 3) ’(a b c d e)) => (a b c)

If a function, returned by (bite-of-length n) is applied on
a list with fewer than n elements it just returns that list.

Another simple bite generator bite-while-element is con-
trolled by an element predicate passed as parameter to the
function. When applied on a list, the generated bite function
returns the longest prefix of the list whose elements, indi-
vidually, satisfy the element predicate. Thus, for instance,

((bite-while-element even?) ’(2 6 7 4)) => (2 6)

Elements which violate the element predicate are called sen-
tinels. The requirement that successive bites of a list append-
accumulate to the original list makes it necessary, one way
or another, to include the sentinel elements in the list. Each
bite includes at most one sentinel. Sentinels can either start
a bite, terminate a bite, or occur alone as singleton bites.
These variations are controlled by an optional keyword pa-
rameter1, sentinel, of the bite generator. The default value
of sentinel is "last". However, the example given above
assumes that sentinel is "first".

1Keyword parameters are simulated in a way that corre-
sponds to how LAML [8] handles XML attributes in Scheme
functions. Following the conventions of LAML, an attribute
name is a symbol and the attribute value must belong to an-
other type (typically a string). In the context of the function
bite-while-element, this explains why the sentinel role is
a string (and not a symbol).

Figure 1: In the list (e1 ... ei ei+1 ...) the elements e1, ...,
ei have been accumulated with use of the function acc and
the initial value iv. The current element ei+1 is passed to
the predicate pred together with the accumulated value.

The following examples illustrate the role of the sentinel

parameter:

((bite-while-element even? ’sentinel "first")

’(1 2 6 7 4)) => (1 2 6)

((bite-while-element even? ’sentinel "alone")

’(1 2 6 7 4)) => (1)

((bite-while-element even? ’sentinel "last")

’(1 2 6 7 4)) => (1)

((bite-while-element even? ’sentinel "last")

’(2 6 7 4)) => (2 6 7)

The remaining bite generators construct bites based on prop-
erties that do not (alone) pertain to individual elements.
Functions generated by the expression

(bite-while-element-with-accumulation

pred accumulator init-val)

accumulate the elements of the bite. The accumulated value
and the ’the current list element’ are handed to a predicate
pred, which controls the extent of the bite. For the sake
of the accumulation, a binary accumulator acc is needed
together with an initial ‘getting started value’ iv. This is
illustrated in Figure 1. The generated function returns the
longest bite in which each element, together with the accu-
mulation of the “previous elements”, fulfill the predicate.

Here follows an example that accumulates elements in an
integer list by simple + accumulation (using 0 as the initial
value). In the example, the predicate states that we are
interested in the longest prefix of the list that, successively,
has a sum of 5 or below.

((bite-while-element-with-accumulation

(lambda (e s) (<= (+ e s) 5))

(lambda (s e) (+ s e))

0)

’(1 2 1 1 -1 2 3 4)) => (1 2 1 1 -1)
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As above, we assume in the general case that the element
type of the list is E. The predicate (which is the first pa-
rameter shown above) has the signature E × S→ bool. The
accumulator (the second parameter) has the signature S ×
E→ S. In the predicate, the S-valued parameter is the accu-
mulation of all values before the E-valued ‘current element’.

A function generated by bite-while-element-with-accumu-

lation always ’consumes’ the first element in the list with-
out passing it to the predicate. As a consequence, the first
element in the bite does not necessarily fulfill the predi-
cate. Without this special case, bite functions generated
by bite-while-element-with-accumulation, will be able
to return empty bites. Recall from Section 1 that empty
bites are illegal (unless taken from an empty list). Succes-
sive “biting” with bite a function generated by bite-while-

-element-with-accumulation is illustrated in Section 3.

A function generated by (bite-while-compare er) returns
the longest bite where elements, pair-wise, fulfill a binary
element relation defined by the function er. Here is an ex-
ample where we identify the longest increasing prefix of a
list:

((bite-while-compare <=)

’(2 6 6 7 1 2)) => (2 6 6 7)

It comes out naturally that bite functions, generated by use
of bite-while-compare, return non-empty bites when ap-
plied on non-empty input. It should be noticed that the
effect of bite-while-compare can be achieved by a (rather
clumsy) application of bite-while-element-with-accum-

ulation with an accumulator that just returns the previous
elements.

The last bite generation function that we will discuss in this
section is bite-while-monotone, which can be seen as a
convenient generalization of bite-while-compare. Based
on an element comparator, which follows the C conventions
of comparison functions2, a function generated by bite-

-while-monotone returns the longest monotone bite of the
list. More precise, the function returns the longest list prefix
where successive pairs of elements have the same value when
passed to the comparator function. Here is an example:

((bite-while-monotone (make-comparator < >))

’(1 2 3 2 1 0 4 4 4 1 2 1))

=> (1 2 3)

The element comparator is constructed by make-comparator,
which as input receives the greater than and the less than
functions. Five “successive bitings” with the function in the
example produces the bites (1 2 3), (2 1 0), (4 4 4), (1
2), and (1) respectively. Such “successive biting” can easily
be realized with use of map-bites which will be introduced
in the following section.

As explained above, all generated bite functions have the
signature List<E> → List<E> for some element type E.
2In the scope of this paper (compare-to x y) is -1 if x is
less than y, 0 if x is equal to y, and 1 if x is greater than y.

In some situations it is useful to know where a given bite
belongs relative to neighboring bites. For this reason, all
generated bite functions accept a second integer parameter
that informs the bite function about the current bite number,
in contexts where bites are generated successively (as intro-
duced in Section 1). In Scheme, this is handled by requiring
that all generated bite functions have a rest parameter, like
in (lambda (lst . rest) ...), where the first element in
rest will be bound to the current bite number. Examples
are provided when we discuss the bite mapping and bite
filtering functions in Section 3.

Finally, most bite generators accept an optional predicate,
called a noise predicate. Elements that fulfill the noise pred-
icate are passed unconditionally to the resulting bite. Noise
elements are not counted (in the context of bite-of-length),
are not taken into consideration by the predicate of bite-
-while-element, and are not accumulated by bite-while-

-element-with-accumulation. In Section 4 we will see prac-
tical examples that reveal the usefulness of noise predicates.

3. BITE MAPPING AND BITE FILTERING
We will now discuss a number of higher-order functions that
successively applies a bite function to a list, and which pro-
cesses the resulting bites in various ways. As already men-
tioned, some bite functions can be generated by one of the
functions described in Section 2. More specialized bite func-
tions will have to be explicitly programmed relative to the
specific needs.

3.1 The map-bites function
The function map-bites is the natural counterpart to the
classic map function in both Scheme and Common Lisp.
map-bites applies a bite transformation function on each
bite of a list (relative to repeated application of a given bite
function):

(map-bites bite-function bite-transf lst)

If applied on a bite of type List<E>, the transformation
function bite-transf is supposed to return another list of
type List<F>. The lists produced by the bite transforma-
tion function are spliced (append accumulated) by map-bites.
In that way (map-bites bf id lst), where id is the iden-
tity function, is equal to lst for any bite function bf.

Let us first use the Scheme function list as the bite trans-
formation function, with the purpose of explicitly identifying
the bites successively delivered by a given biting function.
This particular transformation illustrate the typical need of
somehow revealing/representing the individual bites in the
results returned by the mapping or filtering functions.

(map-bites (bite-while-element number?) list

’(1 -1 1 a 3 4 b 6 1 2 3)) =>

((1 -1 1 a) (3 4 b) (6 1 2 3))

The bites taken by (bite-while-element number?) places
a sentinel value as the last element of the bite (because,
as explained in Section 2, the default value of the optional
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sentinel parameter is "last"). In the example, a sentinel
element is an element which is not a number. If the inten-
tion is to get rid of sentinel elements after applying the bite
function, it may be better to isolate them using the "alone"

sentinel option:

(map-bites

(bite-while-element number? ’sentinel "alone")

list

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

((1 -1 1) (a) (b) (c) (3 4) (b) (6 1 2 3))

In this example it is straightforward to get rid of singular,
non-numeric elements from this list by ordinary (element)
filtering.

Let us also illustrate map-bites relative to other bite func-
tions, as produced by the generators discussed in Section
2.

(define sum-at-most-5

(bite-while-element-with-accumulation

(lambda (e v) (<= (+ e v) 5))

(lambda (v e) (+ v e))

0))

(map-bites sum-at-most-5 list

’(1 2 1 1 -1 7 -1 3 1 4)) =>

((1 2 1 1 -1) (7) (-1 3 1) (4))

(define increasing

(bite-while-compare <=))

(map-bites increasing list

’(2 6 6 7 5 1 -3 1 8 9)) =>

((2 6 6 7) (5) (1) (-3 1 8 9))

(define monotone-ints

(bite-while-monotone

(make-comparator <= >=)))

(map-bites monotone-ints list

’(2 6 6 7 5 1 -3 1 8 9)) =>

((2 6 6 7) (5 1 -3) (1 8 9))

3.2 The bite filtering functions
Bite filtering, as provided by the function filter-bites, has
the following parameter profile:

(filter-bites bite-function bite-predicate lst)

After generation of each bite with use of bite-function the
bite is passed to a bite-predicate, which decides if the bite
should be part of the output list. The bites accepted by the
bite predicate are spliced together, in the same way as in
map-bites. The non-accepted bites are discarded. The fol-
lowing example, which works on bites of length 3 (whenever
possible), filters the bites that start with a number:

(filter-bites

(bite-of-length 3)

(lambda (bite) (number? (car bite)))

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

(1 -1 1 3 4 b 6 1 2 3)

The following bites are taken out of the sample list: (1 -1

1), (a b c), (3 4 b), (6 1 2), and (3). The predicate
only discards (a b c), because the first element of this bite
is not a number. The remaining bites are spliced together
and returned by filter-bites.

It is often convenient to apply a bite transformation function
bite-transf just after filtering with bite-predicate:

(filter-map-bites bite-function bite-predicate

bite-transf lst)

This function first chunks the list lst with use of bite-func-
tion. Each resulting bite is passed to bite-predicate, and
the accepted bites are transformed by bite-transf (to a
value which must be a list). The lists returned by the bite
transformations are finally spliced together.

In simple cases we can (just as illustrated for map-bites

above) use the bite transformation function list for identi-
fication of the bites that have survived the filtering.

(filter-map-bites

(bite-of-length 3)

(lambda (bite) (number? (car bite)))

list

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

((1 -1 1) (3 4 b) (6 1 2) (3))

The result of this filtering is similar to the previous example,
but the bite structure is preserved in the output.

The implementations of map-bites and filter-bites are
simple and straightforward. The function map-bites is im-
plemented as a tail recursive function that collects the trans-
formed bites in a list, which is reversed and append-accumu-
lated as the very last step. The function filter-bites is
implemented in a similar way.

In general, the bite functions are implemented by means of
tail recursive functions which collect the bite elements in a
parameter, which is reversed before a bite is returned. Be-
cause a bite is prefix of a list, say of length n, we need to
allocate n new cons-cells for it. (This would not have been
necessary if we worked on suffixes of a list, like the Common
Lisp function maplist). It is crucial for our approach that
the bites are materialized as separate lists, but it is also quite
expensive to allocate (and deallocate) memory for these in-
termediate structures.

3.3 The step-and-map-bites function
We will now discuss step-and-map-bites which is a slightly
more complex variant of filter-map-bites. The parame-
ter lists of step-and-map-bites and filter-map-bites are
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basically the same. filter-bites and filter-map-bites

both discard a whole bite b, if b is not accepted by the bite
predicate. Let us assume that the length of a bite b is n. It
b is accepted by the bite predicate in step-and-map-bites

it is transformed just like it is done by filter-map-bites,
and we step n elements forward from the beginning of the
current bite before we take the next bite of the list. If b is
not accepted by bite-predicate, we do not discard n ele-
ments when using step-and-map-bites. Instead, the predi-
cate gives back a step length s (typically 1), and the next bite
taken into consideration starts s elements ahead. Elements
stepped over are not discarded (as in filtering functions).
Such elements are passed directly and untransformed to the
output.

In the setup just described, the value returned by the bite
predicate has two purposes: (1) The accepting purpose (a
boolean view of the value) and (2) the stepping length pur-
pose (an integer view of the value). Therefore the bite pred-
icate of step-and-map-bites returns an integer. A positive
integer p is considered as an accepting value, and p is the
stepping length. The number p is typically (but not neces-
sarily) the length of the most recent bite. A negative integer
n is a non-accepting value, and -n is the stepping length. In
most practical cases n is -1.

The execution of the functions map-bites, filter-bites,
and filter-map-bites are linear in the length of the input
list, if the bite functions, together with the other function
parameters, are linear in their processing of the prefixes of
the list. In contrast, step-and-map-bites is able to regress
the “biting process”, hereby processing the same elements of
the input list several times.

As another difference, map-bites and filter-bites process
disjoint “bite” partitionings of a list, as described in Section
1. In contrast, and as discussed above, step-and-map-bites
processes selected disjoint3 bites that may be separated by
list elements, which are unaffected by the mapping process.
We may consider these “in between elements” as interme-
diate bites. Using this interpretation, the processing done
by step-and-map-bites can be thought of as operating on
disjoint bites (those selected together with the intermediate
bites) that append-accumulate to the original list.

In the following example, the biting function takes bites of
length 3 out of a list of integers. A bite is accepted if the
sum of the elements of the bite is even. If the bite is not
accepted, we take a single step forward, and recurses from
there.

(step-and-map-bites

(bite-of-length 3)

(lambda (bite) (if (even? (apply + bite))

(length bite)

-1))

list

3Disjointness is only assured if the stepping length of the
integer-valued bite predicate returns a positive number
which is not less than the length of the accepted bite. The
last part of Section 3.3 shows an example where the stepping
length is 1. This leads to processing of overlapping bites.

’(0 1 2 1 2 3 4 0 -2 1 3 4 5)) =>

(0 (1 2 1) 2 3 (4 0 -2) (1 3 4) 5)

The first bite of length 3 is (0 1 2), and its element sum is
odd. The stepping mechanism causes step-and-map-bites

to output the element 0, and consider the next bite (1 2 1).
The element sum of (1 2 1) is even, and it is accepted and
transformed (with the function list). We therefore step
3 elements forward. The following (overlapping) bites (2

3 4) and (3 4 0) are not accepted, because their element
sums are non-even. The elements 2 and 3 are consequently
transferred the output list. The next bite of length 3, which
is (4 0 -2), is accepted, etc.

If the “predicate” of step-and-map-bites (the second pa-
rameter) returns a positive integer smaller than the length
of the bite, overlapping bites will be processed. The follow-
ing variant of the expression shown above returns all possible
consecutive triples of a list with even element sum:

(filter list?

(step-and-map-bites

(bite-of-length 3)

(lambda (bite) (if (even? (apply + bite))

1 ; <-- The difference

-1))

list

’(0 1 2 1 2 3 4 0 -2 1 3 4 5))) =>

((1 2 1) (1 2 3) (4 0 -2) (-2 1 3)

(1 3 4) (3 4 5))

At the outer level of the expression we disregard all non-list
elements with use of the ordinary element filter function.

4. MAPPING AND FILTERING BITES OF
MIDI SEQUENCES

As already mentioned in Section 1, the development on bites
of lists was motivated by our work on MIDI programming in
Scheme. In this section we discuss a number of MIDI pro-
gramming problems and solutions facilitated by bite map-
ping and filtering. First, however, we give some background
on our approach to MIDI programming in Scheme.

MIDI is a protocol for exchange of music-related events. The
MIDI protocol emphasizes sequences of discrete music events
(such as NoteOn and NoteOff events) in contrast to an audio
representation of the music. A piece of music can be repre-
sented as a Standard MIDI file in a compact binary represen-
tation. A Standard MIDI file4 is basically a long sequence
of MIDI events. We have developed a Scheme representa-
tion of a Standard MIDI file, which relies on LAML5 for
representation of MIDI sequences. We call it MIDI LAML
[9].

In MIDI LAML we work on long lists of MIDI events (typi-
cally several thousands events). The main goal of our system
4A Standard MIDI file of format 0 is a sequence of MIDI
events. Format 1 and format 2 midi files are structured in
tracks and songs respectively.
5LAML [8] represents our approach and suite of tools to deal
with XML documents in Scheme.
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Figure 2: A piano roll presentation of a few notes n1 .. n5 and their (horizontal) durations. The bite formed by the notes
n1 .. n4 is followed by a pause, because n5 starts after the absolute time Sound Frontier + Pause Length.

is to do useful work on music via functionally programmed
solutions - in contrast to interactive operations in a MIDI
sequencer environment. Instead of always working on indi-
vidual MIDI events it is often attractive to work on selected,
consecutive sublists of MIDI sequences. Such sublists are
bites of MIDI events.

When a list of MIDI events is captured from a MIDI instru-
ment, the first job is typically to impose structure on the
list. The structure will consist of music-related divisions of
the MIDI list. Many such structures can be captured by ap-
plication of bite mapping. We will now describe how it can
be done by use of the functions from Section 2 and 3. It is
recommended that the reader consults the detailed program
listings in the appendix while reading the subsections below.

4.1 Bars
For temporally strict music6 the bar/measure structure can
be captured by mapping a next-bar bite function over the
music using map-bites. A relevant bite function can be gen-
erated by means of either bite-while-element-with-accu-
mulation (for delta timed MIDI sequences) or bite-while-
-element (for absolutely timed MIDI sequences). A simple
transformation of map-bites is to insert a bar division meta
message into the stream of notes in order to emphasize the
bar structure of the music. The function map-bars, as out-
lined in Appendix A.1, wraps these pieces together.

As a more interesting application, it is possible via the trans-
formation function of map-bites to affect the characteristics
of selected bars, for instance the tempo, the velocity (play-
ing strength), or the left/right panning. In the last part of
Appendix A.1 we show how to gradually slide the tempo of
every fourth bar of a song with use of map-bars, which is
programmed on top of map-bites.

4.2 Pauses
A song is often composed by parts separated by pauses. A
pause is a period of time pl during which no NoteOn messages

6Music played by metronome, or music captured from a
source which quantizes the start and duration of notes to
common note lengths, is here called temporally strict music.

appear. In addition, we will require that all previously acti-
vated notes have ended before entering the pause of length
pl.

It is obviously useful to identify pauses in a song, because it
will provide a natural top-level structure in many kinds of
music. We provide a function called map-paused-sections

which maps some function f on sections of MIDI message
that are separated by pauses. This function is implemented
in terms of map-bite, which in turn uses a bite function gen-
erated by bite-while-element-with-accumulation. Please
consult Appendix A.2 where the implementation of map-

-paused-sections is presented.

The use of the generated bite function is illustrated in Fig-
ure 2. Let us assume that we look for pauses of at least
pl time ticks. The accumulator keeps track of a point in
time called the sound frontier sf where all previous notes
have been ended. The predicate examines if the next note
starts at a time after sf + pl. If this is the case a pause has
been identified, and this ends the current bite of the MIDI
sequence.

The actual implementation of map-paused-sections, as it is
shown in Appendix A.2, uses a variant of map-bites called
map-n-bites, which passes the bite-number to the transfor-
mation function. With use of this variation, it is easy to
insert numbered markers into the MIDI sequence.

4.3 Sustain intervals
When playing a piano, one of the pedals is used to hold the
notes after they have been released on the keyboard. This
is called sustain. In a MIDI representation, sustain is dealt
with by particular ControlChange messages that represent
the level of the pedal. We are interested in identifying the
monotone sustain regions, such as R1, ..., R7 shown Figure
3. A single bite of the MIDI sequence can be identified
with a function generated by bite-while-monotone from
Section 2. When such a bite function is mapped over the
entire sequence of MIDI messages with map-bites, we can
conveniently process the regions shown in Figure 3.

We have programmed a function on top of these applica-
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Figure 3: Seven regions of MIDI events that represent ‘pedal down” and ‘pedal up’ intervals. Region 6 and 7 are both pedal
down intervals. The pedal moved quickly from a low value to a high value. It is not a requirement that monotone bites
alternate between being increasing and decreasing.

tions called map-sustain-intervals, which passes knowl-
edge about the monotonicity to the transformation function
of map-bites. (Please consult Appendix A.3 for details).
This can, for instance, be used for fastening the downward
pedal movements (in the regions R2, R4, R6, and R7 of
Figure 3), such that sustained notes rings out steeper or
earlier than in the original. Without use of a generated bite
function, and without use of map-bites, it would be a fairly
difficult task to program such a transformation (let alone the
effort of realizing the change interactively in a conventional
MIDI sequencer).

4.4 Chord identification
As the final example from the domain of MIDI music we will
discuss how to identify the chords in a piece music. Chord
recognition [12] is much more difficult to handle than the
other music related examples we have discussed above. In
the context of the work described in this paper, it is not the
ambition to come up with a high-quality chord recognition
algorithm. Rather, our goal is to find out which chords
can be identified based on rather straightforward use of the
functions described in Section 2 and 3.

A chord is, in a formulation due to Wikipedia, a set of three
or more notes that is heard as if sounding simultaneously
[17]. The notes in a chord are not necessarily initiated at
the exact same time. At top-level, chords are identified by a
function map-chords, which is shown in Appendix A.4. This
is a higher-order function which applies a given function on
every sublist identified as a chord. Internally, map-chords

calls step-and-map-bites which is one of the functions we
described in Section 3. We use step-and-map-bites to-
gether with a bite function generated with bite-while-

-element-with-accumulation. This bite function takes a
bite of notes, where each note is temporally relatively close
to the previous note. The predicate of step-and-map-bites
(the second parameter) asserts if the relevant notes of the
bite fulfill a chord formula. If it is not the case, the step-
ping mechanism of step-and-map-bites is activated. This
implies that a new bite of temporally close notes is taken,
and so on. Please take a look in Appendix A.4 for additional
details.

4.5 Noise elements
In all but the first example in this section, it is useful to
zoom in on certain MIDI events, and to be able to disre-

gard all other events. This is possible by use of the so-called
noise predicate mentioned briefly in Section 2. The noise
predicate can be applied on elements of the list, from which
bites are taken. Elements that satisfy the noise predicate
are disregarded while identifying a bite (in predicates, com-
parison, accumulation, etc.), but noise elements appear in
the resulting bite.

In the function that locates pauses, map-paused-sections,
which is shown in Appendix A.2, all non-NoteOn events (such
as instrument selection, sustain and tempo changes) are con-
sidered as noise. In addition, map-paused-sections relies on
a relevance function (third parameter) which at a detailed
level points out the MIDI events which should be taken into
account when looking for pauses. This may, for instance, be
all notes in a particular channel above a certain note value
(pitch value). The negation of the relevance function is used
as noise function of the bite function “under the hood”. This
separation of concern turns out to be very useful: The fil-
tering of relevant messages takes place in the generation of
the bite function (bite-while-element-with-accumulati-
on), totally separated from the logic that deals with the rules
for pauses in the music.

In the function that identifies sustain intervals, all non-
sustain messages (such as NoteOn messages) are noise el-
ements. In the chord identification function only NoteOn

events in a given channel are relevant. All other messages
are considered as noise.

4.6 Discussion
As mentioned in the introduction to Section 4, the primary
use of bite functions in a music related context is to identify
structures in the music. Some structures, such as the use
of tracks, are already manifest in the representation of some
Standard MIDI files. The bar structuring can also appear
explicitly in the MIDI LAML representation of Standard
MIDI files.

Some structures are very difficult to identify automatically.
Although we may attempt to capture song lines and song
verses via use of bite functions, it is our experience that
it is not always realistic to accomplish this with success.
Therefore, the MIDI LAML environment contains a num-
ber of facilities for manual introduction of additional struc-
tures. This includes manual insertions of MIDI markers
(meta events), and systematic transformation of events in
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a dedicated channel to MIDI markers. See the paper about
MIDI programming in Scheme [9] for additional details.

The programming technique explored in this paper relies,
to large extent, on higher-order function that receives and
generates functions. As a typical scenario, a bite mapping
function receives both a bite function bf and a bite transfor-
mation function btf. bf may be generated by one of the bite
generator functions from Section 2 on the basis of several
other functions, such as a list element predicate, an accu-
mulator, and a noise function.

It turns out to be a typical situation that the information
established by one function, such as the bite function bf, also
is needed by another function, such as the bite transforma-
tion function btf. As a concrete example, the direction of
the pedal in Section 4.3 and Appendix A.3 is identified in
the bite function, but it is also needed in bite transforma-
tion function. It would clutter everything if we attempted to
pass this “additional information” as the function result to-
gether with the “main function result”, for instance with use
of multiple valued functions. In pure functional program-
ming, passing the information via an output parameter is
not feasible either. We choose to re-calculate the informa-
tion in the bite transformation function - as the least evil
way out of the problem. It is possible to abstract the du-
plicated parts to a common lambda expressions at an outer
scope level, but this solution does not necessarily lower the
complexity of the program. As an alternative, it could be
tempting to let the bite function fuse the needed information
into the bite, hereby transferring it to the bite transforma-
tion function. This solution requires that it is possible to
associate extra information with the bites.

5. RELATED WORK
In this section we will discuss existing work which is related
to our work on bites of lists.

The idea of capturing recursive patterns using “Functions
with Functions as Arguments” first appeared in John Mc-
Carthy’s seminal paper about recursive functions and sym-
bolic expressions from 1960 [7]. In this paper, the maplist

function (as mentioned in Section 1) appears together with
a linear search function. It soon became clear that a large
class of list-related problems can be solved by a few appli-
cations of map and filter, typically followed by some re-
duction. During fifty years, the use of mapping and filtering
functions together with reduction functions have played a
role in almost any textbook about Lisp, Scheme, and other
functional languages.

Common Lisp supports functions on sequences [15]. A Com-
mon Lisp sequence is a generalization of lists and one-dimen-
sional arrays. Many of the Common Lisp sequence functions
are higher-order functions. Some functional arguments are
passed as required parameters, others are passed as keyword
parameters. The processing of successive bites, as proposed
in this paper, can be handled by use of the :start and :end

keyword parameters in many of the sequence functions. The
:start and :end keyword parameters delimit a sublist which
subsequently can be processed in various ways (removed,
substituted). By use of these keyword parameters a Com-
mon Lisp programmer can do simple bite processing. The

Common Lisp sequence functions operate at the level of list
elements. Only element testing and element transformation
is provided for. In contrast, the bite mapping and filtering
functions in this paper work on sublists as such. The higher
level of abstraction in the bite-related functions may be con-
venient and powerful in some contexts, but it is also quite
expensive. The cost comes primarily from copying prefixes
of a list, in order to form the bites.

There exists a variant of Common Lisp sequences called se-
ries (see appendix A of [15]). In this work the main focus
is on automatic transformation of series to efficient itera-
tive looping constructs [16]. In our current work it would
be interesting and useful to consider similar techniques for
obtaining more efficient mapping and filtering of bites. A
number of functions in the series package are oriented to-
wards splitting of a list into one or more sublists (split,
split-if, subseries, chunk). As such, it is plausible that
some of the bite processing programs discussed in this paper
can be converted to use functions from the series library.

R5RS Scheme [5] is quite minimalistic with respect to list
supporting functions. The repertoire of list functions in
the R6RS Scheme standard libraries [14] is more compre-
hensive. In relation to R5RS, additional list functions are
supported by SRFIs, most notable the SRFI 1 List Library
[13]. This library supports the drop and take functions.
The expression (take lst i) returns the first i elements of
lst, and it corresponds to the ((bite-of-length i) lst).
The SRFI 1 function take-while correspond to the function
bite-while-element, as described in Section 2.

Modern object-oriented programming languages handle a
variety of different collection types via so-called iterators.
An iterator is a mutable object that manages the traver-
sal of a collection. The LINQ framework (well described in
[1]) of C# [2] is a good example of a system which han-
dles the processing of data collections via use of iterators.
There exists a number of LINQ query operators that are re-
lated to sub-collections (Take, TakeWhile, Skip, SkipWhile,
GroupBy). It remains to be seen to which degree the existing
query operators can be used directly for the purposes that
are discussed in this paper. If this is not the case, it should
be noticed that it is easy to define new, specialized query
operators (as extension methods in static classes) that carry
out specialized operations of collections.

The concept of bites, as introduced in this paper, is known as
slices in other contexts. Some programming languages have
special notation for slicing. A good example is Python [6]
which generalizes the classical subscripting notation seq[i]

to slicing notation seq[i:j]. In this expression both i and
j are optional. Therefore, the Python expression seq[:j],
which extracts the first j elements of a sequence object,
corresponds to ((bite-of-length j) seq) using the bite
generator bite-of-length from Section 2 of this paper.

As much more advanced notation, known as list comprehen-
sion, is supported in many programming languages (such
as in Haskell [4] or Python [6]). List comprehension, which
is inspired by conventional mathematical set building nota-
tion, is a syntactic abstraction over applications of mapping
and filtering functions. Therefore, list comprehension may
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Figure 4: Three different situations of bite taking and bite
transformation.

be used as an alternative to explicit mapping and filtering
when we wish to process sublists of list.

During the last few years, the words “map” and “reduce”
have been used to characterize a particular kind of parallel
processing of very large collections of data. MapReduce [3],
as used by Google, works on key/value pairs, and (in part)
because of that, its relation to the original work on mapping,
filtering and reduction is relatively weak. In the scope of
this paper, it may be interesting to notice that the initial
chunking of data (as a preparation for the parallel mapping
in MapReduce) may be realized by taking bites of a list.
The initial chunking is, however, not really a central part of
MapReduce.

In an earlier paper about mapping and filtering in functional
and object-oriented programming [11] we have described the
idea of general mapping. General mapping is characterized
by (1) element selection, (2) element ordering, (3) function
selection (selection of function(s) to apply on the selected
elements), (4) calculation (which transformation to apply),
and (5) the result of the mapping. Relative to this under-
standing, the current paper contributes to the first aspect,
namely a more elaborate way of selecting the part of list to
be transformed in the mapping process.

6. CONCLUSIONS
The abstractions introduced in this paper are useful in situ-
ations where it is necessary to process selected sublists of a
list, in contrast to individual elements of a list. As illustrated
in Section 4 the generated bite functions are, together with
the bite mapping functions, useful for discovering structures
among the elements in a list. As a use case, we have demon-
strated how a number of important music related structures
can be captured in Standard MIDI Files.

Figure 4 illustrates three typical bite mapping scenarios,
supported by our bite mapping functions. The most regular
scenario, as supported by map-bites, is a complete, disjoint
chunking of a list followed by processing of the chunks, as
shown in Figure 4(a). With use of step-and-map-bites we
can approach application areas in which we more exhaus-
tively search for certain “sequences of consecutive elements”
which together not necessarily span the entire list. This sit-
uation is sketched in Figure 4(b). As mentioned briefly in
Section 3, it is also possible to extract and process overlap-
ping sublists with use of step-and-map-bites. This situa-
tion is shown in Figure 4(c).

The organization of the sublisting facilities as higher-order
functions has been the primary focus of this paper. We have
striven for natural generalizations of the classical map and
filter functions, which are well-known in most functional
programming languages. Thus, the main emphasis in this
paper has been to provide mapping and filtering of sublists
via a few functions (such as map-bites and filter-bites)
which take other functions are parameters. The bite func-
tions introduced in Section 2 are of particular importance
among these function parameters. We have explored how a
number of useful bite functions can be produced by bite
function generators, such as bite-of-length, and bite-

-while-element.

The functions discussed in this paper and their API docu-
mentation are available on the web [10].
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APPENDIX
A. DETAILED MIDI PROGRAMS
In this appendix we present more detailed examples related to the MIDI application area. The examples are all introduced
and discussed at an overall level in the subsections of Section 4.

A.1 Bars
The MIDI function library contains a function map-bars, which activates map-bites with an appropriate bite function and
bite transformation function. Here is a sample application of map-bars on some temporally strict music referred to as
SOME-MIDI-EVENTS:

(map-bars

(lambda (messages n st et) (list (midi-marker-abs-time st "Bar" n) messages))

480 ; Pulses Per Quarter Note.

’(4 4) ; Time signature is 4:4.

SOME-MIDI-EVENTS

)

In addition to the messages in the bar, the function mapped over the bar (the lambda expression shown above) receives a bar
number n, the start time st, and the end time et of the bar. In the body of the lambda expression, we see that the messages
in the bar are being prefixed with a MIDI marker.

In absTime mode, the function map-bars is implemented in terms of map-bites using a bite function generated by bite-

-while-element. Here is an outline of the use of map-bites in map-bars:

(define (map-bars f ppqn time-signature . messages)

...

(map-bites

(lambda (lst . rest) ; The bite function.

(let* ((start-time-first-mes (midi ’absTime (first lst)))

(bar-number (quotient start-time-first-mes ticks-per-bar)) ; Zero based.

(bar-start-time (* bar-number ticks-per-bar))

(bar-end-time (+ bar-start-time ticks-per-bar))

)

((bite-while-element (lambda (mes) (< (midi ’absTime mes) bar-end-time)) ’sentinel "first") lst)))

(lambda (bite) ; The bite transformation

(let* ((start-time-first-mes (midi ’absTime (first bite))) ; function.

(bar-number (quotient start-time-first-mes ticks-per-bar))

(bar-start-time (* bar-number ticks-per-bar))

(bar-end-time (+ bar-start-time ticks-per-bar))

)

(f bite (+ bar-number 1) bar-start-time (- bar-end-time 1)) )) ; Activation of f on the bar.

messages))

The bar-number, bar-start-time and bar-end-time are needed for taking a bar bite from the MIDI messages. As it appears,
these values are recalculated in the bite transformation function, as a service to the function f being mapped to the bars
of the music. These calculations can be lifted out of the map-bites application to a multi-valued function. But due to the
unpacking of these values in both lambda expressions, the modified programs is not shorter, not simpler, and probably not
more efficient than the version with the recalculations shown above. As discussed in Section 4.6, it seems to be typical that
information calculated in the bite function also is useful in the bite transformation function.

As an example of a more elaborate use of map-bars, we will show how it is possible to slide the tempo of every fourth bar
down to half speed, and back again to normal speed:
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(map-bars

(lambda (messages n st et)

(if (and (> n 0) (= (remainder n 4) 0)) ; Every fourth bar.

(list

(tempo-scale-1 20 ; Use tempo scaling.

120

(make-scale-function-by-xy-points ; A scaling function

(from-percent-points ’((0 100) (50 50) (100 100)))) ; use for tempo scaling.

120 ; Base tempo is 120 BPM.

messages

)

(midi-marker-abs-time st "Bar" n) ; Still inserting markers.

)

(list messages (midi-marker-abs-time st "Bar" n)))

)

480

’(4 4)

SOME-MIDI-EVENTS)

As it appears in the lambda expression shown above, bars with bar numbers divisible by 4 are tempo scaled by use of the
function tempo-scale-1. The details of the tempo scaling is not relevant for this paper.

A.2 Pauses
At the top level, pauses are captured in a similar way as we located the bars in Appendix A.1.

(map-paused-sections

(lambda (n mes-lst)

(list (midi-marker "Start of paused section" n "P") mes-lst))

130 ; Pause time ticks.

(lambda (ast) (and (NoteOn? ast) (= (midi ’channel ast) 1))) ; The relevance function.

SOME-MIDI-EVENTS)

The function map-paused-sections has been implemented with use of map-n-bites and a bite function generated by
bite-while-element-with-accumulation:

(define (map-paused-sections f pause-ticks relevance-predicate . messages)

(map-n-bites

(bite-while-element-with-accumulation

(lambda (mes sound-frontier-time) ; The predicate.

(not (and (> (midi ’absTime mes) sound-frontier-time)

(> (- (midi ’absTime mes) sound-frontier-time)

pause-ticks))))

(lambda (sound-frontier-time NoteOnMes) ; The accumulator.

(max sound-frontier-time

(+ (midi ’absTime NoteOnMes) (midi ’duration NoteOnMes))))

0 ; The initial value.

(lambda (x) ; The noise function.

(and (ast? x)

(or (not (relevance-predicate x)) (not (NoteOn? x)))))

)

(lambda (midi-messages-bite n) ; The bite transformation

(f n midi-messages-bite)) ; function.

messages))
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A.3 Sustain intervals
The following application of map-sustain-intervals illustrates how to obtain a faster release of the sustain pedal, without
affecting the way the pedal is moved downwards.

(map-sustain-intervals

1 ; The channel affected.

(lambda (messages n direction) ; The function mapped on

(cond ((eq? direction ’increasing) ; intervals of messages that

messages) ; are monotone in sustain

((eq? direction ’decreasing) ; control messages.

(scale-attribute-by-factor-1

(lambda (ast) (ControlChange? ast 64 1))

’value

0.75

messages))

((eq? direction ’constant)

messages)

(else (laml-error "Should not happen"))))

SOME-MIDI-EVENTS)

Only in intervals with decreasing pedal movement, the value attributes of the appropriate ControlChange messages are scaled
by the factor of 0.75.

The function map-sustain-intervals is implemented with use of map-n-bites. The bite function is generated by bite-

-while-monotone.

(define (map-sustain-intervals channel f . mes)

(let ((cc-val-comp

(make-comparator

(lambda (cc1 cc2) (< (midi ’value cc1) (midi ’value cc2)))

(lambda (cc1 cc2) (> (midi ’value cc1) (midi ’value cc2)))))

(noise-fn (lambda (x) (not (ControlChange? x 64 channel))))

)

(map-n-bites

(bite-while-monotone ; The bite function generated

cc-val-comparator ; with bite-while-monotone.

noise-fn)

(lambda (mes bite-number) ; The bite transformation

(f mes bite-number ; function.

(cond ((increasing-list-with-noise? cc-val-comp noise-fn mes)

’increasing)

((decreasing-list-with-noise? cc-val-comp noise-fn mes)

’decreasing)

(else ’constant))))

mes)))

As it appears, the sustain interval map function f gets information about the monotonicity of the MIDI message interval.
This information has already been established in the bite function, but it needs to be re-calculated in the bite transformation
function (via the two calls of increasing-list-with-noise). Without this information, we would not have been able to
accomplish the task of dimming only the release of the pedal.

A.4 Chords
Chord identification makes use of step-and-map-bites instead of map-bites. Hereby the chords are identified in a more
elaborate searching process than we have seen in the other examples. At top level, we search for chords in channel 1 of a piece
of music in this way:

(map-chords

1 ; Channel number.

40 ; Max chord note distance.

chord-marker ; Chord markup function.

SOME-MIDI-EVENTS)
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The function chord-marker inserts markers (MIDI meta events) around a chord. In addition to a“chordal bite”, chord-marker
receives the channel number, the bite number, the successful chord formula, and the chord name.

Here follows the function map-chords in order to illustrate the use of step-and-map-n-bites and the bite function generated
by bite-while-element-with-accumulation.

(define (map-chords channel max-time-diff f . messages)

(let ((normalized-note-val (lambda (noteon-mes) (remainder (midi ’note noteon-mes) 12)))

(relevant-message? (lambda (x) (and (NoteOn? x) (= channel (midi ’channel x)))))

)

(step-and-map-n-bites

(bite-while-element-with-accumulation

(lambda (mes prev-time) ; Keep going while

(if prev-time ; notes are dense.

(if (< (- (time-of-message mes) prev-time) max-time-diff)

#t

#f)

#t))

(lambda (time mes) ; Accumulate time of

(time-of-message mes)) ; previous note.

#f ; Initial accumulation value

(negate relevant-message?) ; The noise function.

)

(lambda (bite) ; The int returning

(let ((chord-list ; predicate ...

(map (lambda (no) (normalized-note-val no))

(filter relevant-message? bite))))

(if (chord-match? (normalize-chord-list chord-list)) ; ... that determines a

(length bite) ; chord match

-1))) ; or a stepping value.

(lambda (bite n) ; The function applied on a

(let ((normalized-chord-list ; a chordal bite. Prepares

(normalize-chord-list ; calling f with useful

(map (lambda (no) (normalized-note-val no)) ; information.

(filter relevant-message? bite)))))

(f bite channel n normalized-chord-list

(chord-name-of-normalized-note-list normalized-chord-list))))

messages)))

As it appears, we locate chords in a given channel, among notes with max-time-diff time ticks between them. Only
NoteOn messages in the given channel are taken into account. The noise function, formed by generating the negation of
relevant-message? shown in line 3 of the fragment above, is important for disregarding MIDI events, which are irrelevant
to the chord recognition process.
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ABSTRACT
The Scheme Natural Language Toolkit (SNLTK) is a collec-
tion of procedures, example scripts and programs for natu-
ral language processing (NLP). The SNLTK library is fully
documented and includes implementations of common data-
structures and algorithms for text processing, text mining,
and linguistic, as well as statistic analysis of linguistic data.
Additionally, it also provides basic language data, word lists
and corpus samples from various languages.

The SNLTK target group is Scheme and Lisp enthusiasts,
computational linguists, linguists and language technology
software developers. It is aiming at researchers and teachers,
as well as students, who are interested in language related
cognitive science, psychology, and linguistics.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Natural Language Pro-
cessing; D.2.8 [Software Engineering]: Design Tools and
Techniques—Software libraries

General Terms
Theory

Keywords
Scheme, Racket, NLP, SNLTK

1. INTRODUCTION
The SNLTK project started as a joint activity of faculty,
assistants, and students from various departments at the
University of Zadar, i.e. the Schemers in Zadar:

ling.unizd.hr/~schemers

The Schemers in Zadar is an open group of Scheme and Lisp
enthusiasts. The goals of the group include, among others,
the development of practical tools for computational linguis-
tics, language related informatics and cognitive science in

Scheme and Lisp. The resulting material should also serve
as educational material for courses in the domain of Natu-
ral Language Processing, statistical language analysis and
machine learning models.

The SNLTK is an outcome of joint NLP coding activities,
and an attempt to aggregate the developed code and ex-
amples in an openly available general and specific text and
language processing library.

www.snltk.org

The SNLTK is a collection of Scheme modules for various
tasks in natural language processing (NLP), text mining,
language related machine learning and statistical analysis of
linguistic data.

The core libraries are written in R6RS Scheme, as well as in
Racket (racket-lang.org). The code is tested for compatibil-
ity with common interpreters and compilers, e.g. Larceny.

The libraries are kept independent of external extensions
and modules as much as possible, using the SRFI libraries
where necessary. Additional programs, libraries and scripts
are made available based on Racket. Racket is the recom-
mended working and learning environment.

2. EXISTING TOOLKITS
Numerous other natural language processing tools, libraries
and resources are implemented and available in various pro-
gramming languages, e.g. Java, Perl, Python. Given the vast
amount of NLP components and toolkits, we cannot discuss
all the existing tools and libraries here. We will focus on
the three most prominent packages and toolkits available
for Java, Perl, and Python that are related to SNLTK and
some of its goals.

In general, we should differentiate between speech and lan-
guage processing. These two domains differ with respect to
their nature and formal properties. While speech is con-
cerned with the spoken signal, a non-discrete continuous
event or phenomenon along the time axis, with specific is-
sues related to its digitization, feature recognition and ex-
traction, and consequently specific technologies, approaches,
and algorithms, language refers to the indirectly observable
properties of natural language that are related to combina-
tory and order relations and restrictions of sound groups,
syllables, morphemes, words, and sentences. It is the lan-
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guage domain that the SNLTK is concerned with, and tex-
tual representations of natural language, rather than speech
and signal processing.

Among the most popular of NLP toolkits is the Python Nat-
ural Language Toolkit (NLTK) [1]. The Python NLTK is a
large collection of many common and popular algorithms
for various text and natural language processing tasks. It
contains algorithms for statistical NLP, as well as for rule-
based analysis using common grammar types and symbolic
approaches. Among the available libraries and tools it is
the one widely used in educational computational linguistics
programs worldwide. It is well documented, and significant
amounts of teaching material and examples for it are freely
available online. It contains implementations of the most
important algorithms used in computational linguistics, as
well as samples of common and valuable language data and
corpora.

For Perl, a rich collection of tools and algorithms can be
found in the CPAN archive (see www.cpan.org). Numer-
ous sub-modules are available under Lingua::* module, in-
cluding parsers for Link Grammars [9], WordNet ([14], [6])
access, and many other useful text mining and language pro-
cessing tasks. Numerous valuable introductions to Perl for
text processing and computational linguistic tasks are freely
available online, or published as books, see e.g. [10].

Various tools and algorithms implemented in Java can be
found online. Among the most prominent might be the
OpenNLP (http://incubator.apache.org/opennlp/) collection
of NLP tools, and the Stanford NLP software
(http://nlp.stanford.edu/software/).

The coverage of the Python NLTK is most impressive, as
well as the quality of the implementation. The mentioned
Perl modules do as well offer impressive functionalities for
various NLP oriented tasks and problems. Nevertheless,
these implementations lack overall transparency at the im-
plementation level, and provide less documentation and in-
structions related to the efficient and ideal implementation
of particular algorithms and tools in the particular languages.
It appears that they seem to have been designed with a clear
usage orientation, rather than focusing on the educational
goals of a deeper understanding of the particular algorithms
and their implementation in the respective language or pro-
gramming language paradigm.

Besides all the different implementations of computational
linguistic algorithms for text processing, language and speech
analysis, there are also numerous frameworks for the inte-
gration of specific language processing components for text
mining. Among the most popular environments are Gate
(cf. [21], [11]) and UIMA . These environments do not fo-
cus on particular language processing tasks, but provide an
architecture for handling of sub-components in a language
processing chain.

3. SNLTK GOALS
As mentioned in the previous section, for various compu-
tational linguistic tasks and problems, related to language,
or even speech processing, many tools, libraries and com-
ponents can be found online. The SNLTK is not intended

to compete with these tools for applied computational lin-
guistics tasks. It does not even intend to provide better,
faster, or new solutions for common problems, or new types
of implementation strategies for known or new algorithms.
Its main goal is in fact an educational, experimental, and
research oriented one. In addition, it provides alternative
functional implementations of common, and potentially also
new NLP algorithms.

One the one hand, many algorithms that we implemented for
research and experimental purposes in the past, have been
generalized and added to the library, some have been sim-
plified in order to be easier understandable and analyzable.
Many more will be prepared and added in the near future.
Thus, an initial set of algorithms and tools in SNLTK is
based on implementations from experiments and research
projects that had a potential of being usable elsewhere.

On the other hand, we have chosen Scheme as our devel-
opment and educational language (in addition to, and also
replacing Python) for various reasons. Scheme is a very sim-
ple, but powerful language. It is easy and fast to learn, and
simple to use. Further, various tools, in particular the intu-
itive IDE DrRacket (former DrScheme) for learning Scheme
is available as a cross-platform environment, free of charge,
and without runtime restrictions. It contains various learn-
ing packages, and freely available books and tutorials are
distributed with it, and also available elsewhere online. Dr-
Racket appeared to be the ideal environment for educational
purposes. It is used in many programs in computer sci-
ence, and large amounts of teaching material and examples
are available online. However, it has not been widely used
for computation linguistic courses, which made it necessary
to collect and also re-implement algorithms for educational
purposes.

In addition to being a very good educational and research
language, with very good development tools like DrRacket,
there are many useful tools for Scheme that allow it to be
used for professional software development as well. In par-
ticular, compilers and interpreters exist that generate bi-
naries, or code translation into other languages (e.g. C),
or very good connectivity between languages like Java and
C]. Among the most interesting implementations of such in-
terpreters and compilers we should mention Gambit-C (e.g.
[5]), Larceny (e.g. [2]), Bigloo ([20], 1995; [19]), and Chicken
Scheme (see www.call-cc.org). The possibility to generate
standalone binaries, or translate code automatically into
other programming languages is rather limited or non-existent
in some of the other languages (e.g. Python and Perl) that
natural language toolkits exist for.

Various books and educational material for computational
linguistics based on Common Lisp are already available.
One of the seminal publications on Lisp and Computational
Linguistics is [8]. In addition, [18] offer many computa-
tional linguistics related Lisp implementations of algorithms.
While we consider these textbooks extremely valuable and
important, they nevertheless lack a discussion of modern
approaches and implementation strategies in the domain of
computational linguistics.

While we focus on the implementation of Scheme libraries,
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future releases or parallel versions might be geared towards
ANSI Common Lisp. The use of CUSP and Eclipse as a de-
velopment environment is a possible path, since affordable
commercial Lisp development environments tend to be out-
side of the range for the academic and research community.

4. LIBRARY CONTENT
In its current state the SNLTK contains basic procedures
and data from domains like:
– Finite State Automata
– Parsing with Context Free Grammars
– N-gram models
– Vector Space Models and algorithms for classification and
clustering
– Basic language data for various languages
– Additional components

Specific statistical procedures for the processing of N-gram
models are being developed, as well as document classifica-
tion and clustering functionality.

In the following we shall describe some of the subcomponents
and functionalities implemented in the SNLTK.

4.1 Finite State Automata
Finite State technologies for spell checkers, morphological
analyzers, part of speech taggers, shallow parsers, and vari-
ous other approaches to NLP are well known and discussed
in the literature, see for example [15], and [16]. Finite State
Automata are used for spell checkers, and shallow parsers,
wherever regular grammars or languages are sufficient for
natural language processing.

We made various implementations of FSAs for lexicon com-
pression, morphological analyzes (Croatian morphological
analyzer), and simple word class recognition available in
the SNLTK. The current implementation makes use of table
based FSA implementations. Basic functionalities include
the generation of acyclic deterministic FSAs (ADFSA) from
finite word lists, as well as common operations like unions,
minimization, and concatenations over ADFSAs. Missing
functionalities include conversions of non-deterministic au-
tomata to deterministic ones, the construction of transduc-
ers or Moore/Mealy machines ([17], [12]), and various other
optimizations and code export.

Currently ADFSAs can be exported as DOT definitions for
visualization and interoperability (e.g. code generation, trans-
formation using Graphviz and related tools). A future ver-
sion should be able to export C code definitions of automata,
maybe even directly assembler.

4.2 Parsing with Context Free Grammars
Natural language syntax is formally beyond regular lan-
guages and the coverage of regular grammars. Thus, for
syntactic processing, various parsing algorithms are imple-
mented that use context free grammars (CFG). Simple al-
gorithms like bottom-up or top-down parsers are part of the
parser library, as well as an Earley Parser [4], and other types
of chart parsers, using agenda-based processing strategies.

In addition to the simple parser implementations, graphical

visualization widgets for Racket have been implemented that
display balanced syntactic parse trees.

For higher level syntactic processing that makes use of lexical
feature structures, first versions of unification parsers are
included in the library as well, see [3].

4.3 N-gram models
Various language processing algorithms make use of statis-
tical models of distributional properties of linguistic units,
e.g. sounds, morphemes, words and phrases. An approxima-
tion of such distributional properties can be achieved using
N-gram models.

Various tools for different types of N-gram models are in-
cluded in the SNLTK. It is possible to create character-based
N-gram models from textual data, that are useful for lan-
guage identification and approximations of syllable struc-
ture. In addition, word token-based N-gram model gen-
erators exist as well, that extract statistical distributional
models over word co-occurrences.

Besides token co-occurrence patterns, bags of tokens or types
can be generated from N-gram models as well. Frequency
profiles can be calculated in terms of absolute and relative
frequencies. Some other language tools which include filter-
ing of functional words, lemmatization and normalization
can be applied in different stages of N-gram model genera-
tion. Once a N-gram model is generated frequencies can be
weighted by tf-idf weight (term frequencyâĂŞinverse docu-
ment frequency) before generation of vector space models.

Information theoretic measures are included as well. The
Mutual Information score for example can be calculated for
models and individual N-grams, which is useful for find-
ing correlation between uni-grams or for bi-gram weight-
ing. Other implemented statistical testing functions include
chi-squares and t-tests for testing similarities or differences
between models.

4.4 Vector Space Models and algorithms for
classification and clustering

For various models of distributional properties of tokens and
words in text, as well as complex text models, vector space
models appear to be very useful. Not only multivariate sta-
tistical properties can be processed using such models, but
these models are also language independent, i.e. generalize
well over multiple languages with fundamentally different
properties at various linguistic levels (e.g. syllable structure,
syntactic word order restrictions).

One the one hand, simple mapping algorithms of raw text
and N-gram models to Vector Space Models are provided in
the SNLTK.

For classification and clustering tasks various similarity met-
rics algorithms are implemented, that are used among oth-
ers in a K-Means algorithm for text clustering. As similarity
metrics, various distance measures like Euclidean Distance
and Cosine Similarity are provided. Further scaling algo-
rithms for vector models are provided, including re-ranking
on the basis of tf-idf, as well as statistical significance testing
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on the basis of e.g. chi-square tests.

4.5 Basic language data for various languages
Besides example corpora and word lists for specific languages,
in particular stop word lists for various languages are pro-
vided. The creation of additional stop word lists is facili-
tated by a library which exports them as lists or a hashtable
data structure. In addition to hashtable based lookup lists,
finite state automata can be generated from word lists.

4.5.1 Example corpora
Text collections for various languages are being prepared
that facilitate language model training and tuning, as well
as testing of existing algorithms.

4.6 Additional components
4.6.1 Basic tree visualization (Racket)

The SNLTK also allow us to use Racket interpreter to gen-
erate N-gram models and produce DOT representations of
directed graphs based on the underlying N-grams that can
be visualized with Graphviz or any other alternative tool for
DOT-based graph visualization. The current n-gram2dot re-
lease represents frequencies via heavier weights and length
of edges and also different weight of nodes [7]. Graphviz
can generate different output formats for graphs like PDF,
PNG, SVG.

4.7 Documentation
The documentation of the SNLTK library and tools is pro-
vided initially in English. All documents are translated to
German, Polish and Croatian as well.

The SNLTK documentation contains the library description,
as well as example documents related to the use of specific
library functions, and algorithm implementation issues. One
of the main goals of SNLTK is to provide a detailed docu-
mentation of the algorithms, their implementation, as well
as different examples of use.

5. CONCLUSION
On the one hand, from our experience, we can conclude that
Scheme and current Scheme development environments like
DrRacket are very useful for the development of NLP tools,
as well as for learning and education purposes.

The SNLTK in its current form is subject to further devel-
opment and extension. Its further directions are guided by
the research and educational interests of the participating
researchers and developers.

Future releases of the SNLTK will most likely include more
NLP algorithms, as well as machine learning algorithms, re-
lated, but not restricted to the domain of cognitive modeling
and language learning.
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