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Preface

Message from the Program Chair

Welcome to the 11"th edition of the European Lisp Symposium!

This year’s ELS demonstrates that Lisp continues at the forefront of experimental, academic,
and practical “real world” computing. Both the implementations themselves as well as their
far-ranging applications remain fresh and exciting in ways that defy other programming lan-
guages which rise and fall with the fashion of the day. We have submissions spanning from the
ongoing refinement and performance improvement of Lisp implementation internals, to prac-
tical and potentially lucrative real-world applications, to the forefront of the brave new world
of Quantum Computing.

Virtually all the submissions this year could have been published, and it was a challenge to
narrow them down enough to fit the program.

This year’s Program also leaves some dedicated time for community-oriented discussions, with
the purpose of breathing new life and activity into them. On Day One, the Association of Lisp
Users (ALU) seeks new leadership. The ALU is a venerable but sometimes dormant pan-Lisp
organization with a mission to foster cross-pollenization among Lisp dialects. On Day Two, the
Common Lisp Foundation (CLF) will solicit feedback on its efforts so far and will brainstorm
for its future focus.

On a personal note, this year I was fortunate to have a “working retreat” in the week prior to
ELS, hosted by Nick & Lauren Levine in their villa nestled in the hills above Marbella. This was
a renewing and reflective time which allowed me to recharge and recommit to going back to
the “real world” with a strong desire to do great things with Lisp. Thanks Nick and Lauren!

Wishing you all a wonderful time in (what should be a) sunny Marbella. I am honored to be of
humble service to this awesome community. Many Thanks,

Dave Cooper, writing from Marbella, April 12 2018.
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Message from the Local Chair

When I agreed to help organise the 2018 ELS I expected to be busy, to be stressed, and to end
up with a list of people with whom never to speak again. The reality has been different. Yes
I've been busy. Yes I've been stressed, but everyone I've had to work with has been unfailingly
helpful, from Didier, Dave, Nick and the rest of the ELS team to the local council representatives,
from the restaurant owners to the bus driver and tour guides. The result is that this has been a
very positive experience for me, for Nick I believe, and I hope that this will be reflected in what
should be a very positive experience for us all.

I'hope that you all enjoy your time in Marbella.

Andrew Lawson, Marbella, April 13 2018
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Lisp in a Startup: the Good, the Bad, and the Ugly

Visevolod Dyomkin, m8nware, Ukraine

Over the last 10 years of my software development career, I have mostly programmed in Com-
mon Lisp, in two distinct environments: open-source and startup (aka consumer Internet com-
panies). Among the startup projects, in which I managed to introduce Lisp, the most successful
is Grammarly where the system we had built continues to playa major role — more than two
years after my departure from the company — at the core of its intelligent product used by 10
million people daily.

In this talk, I'd like to share the success stories of developing a number of internet services
in Lisp and the merits of the Lisp enviornment that enabled those, as well as the flip sides
of the same stories that manifest the problems of the Lisp ecosystem — and propose possible
solutions to them. We’ll discuss where Lisp fits best and worst among the different professional
environments and why.

Vsevolod Dyomkin is currently employed as a Lisp consultant at Franz
Inc. working on AllegroGraph. He is a long-time Lisp enthusiast and
quit his job 9 years ago to program in Common Lisp: first, his own
projects, afterwards, in bigger companies and as a hired consultant. His
other area of interest is Natural Language Processing. He has developed
a number of open-source Lisp projects, the most notable of which is CL-
NLP — a yet incomplete Lisp NLP library. He’s also an author of "Lisp
Hackers” — a series of interviews with prominent Lisp programmers.

ELS 2018 1



This Old Lisp

R. Matthew Emerson, USA

Lisp was invented 60 years ago. Coral Common Lisp, the ancestor of today’s Clozure Common
Lisp, was released over 30 years ago.

Over this time, processor architectures and operating systems have come and gone, but Clozure
CL (under various names and forms) has survived and is still with us today.

Clozure CL, Common Lisp, and Lisp itself are the product of many intelligent and clever people.
Indeed, we find ourselves saying, with Newton, "If I have seen a little farther than others, it is
because I have stood on the shoulders of giants."

I will say a few words, looking down from the giant’s shoulders, on the subject of Clozure CL,
that old Lisp, including where it stands today, and how it might evolve in the future.

R. Matthew Emerson currently leads the development and maintenance
of Clozure Common Lisp, a free (Apache 2.0-licensed) Common Lisp
implementation. Formerly an employee of the Common Lisp consulting
company Clozure Associates, he now works on Clozure CL indepen-
dently.

Event Detection in Unstructured Text (using Common Lisp)

Jason Cornez, Spain

At RavenPack, we use Common Lisp to extract meaning from unstructured English text. The
focus is low-latency processing of real-time news feeds and blogs, to provide actionable intel-
ligence to our clients in the financial industry. This talk discusses our technology for detecting
events. We look at what we’ve done so far, what we are working on now, and some future

possibilities.

Jason joined RavenPack in 2003 and is responsible for the design and
implementation of the RavenPack software platform. He is a hands-on
technology leader, with a consistent record of delivering break-through
products.

A Silicon Valley start-up veteran with 20 years of professional expe-
rience, Jason combines technical know-how with an understanding of
business needs to turn vision into reality. Jason holds a Master’s De-
gree in Computer Science, along with undergraduate degrees in Math-
ematics and EECS from the Massachusetts Institute of Technology.
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Petalisp: A Common Lisp Library for Data Parallel Programming

Marco Heisig
FAU Erlangen-Nirnberg
Cauerstrafie 11
Erlangen 91058, Germany
marco.heisig@fau.de

ABSTRACT

We describe the design and implementation of Petalisp — a Com-
mon Lisp library for data parallel programming. At its core, Petal-
isp is a lazy, functional array language. All its statements are an-
alyzed, simplified and compiled at runtime. This approach limits
expressive power and introduces significant overhead, but also un-
locks unprecedented potential for optimization.

We explain Petalisp from a users’ perspective, compare its per-
formance with other libraries for data parallel computation and
finally discuss important facets of our implementation.

CCS CONCEPTS

«Software and its engineering —Parallel programming lan-
guages; Distributed programming languages; Functional lan-
guages; Data flow languages; Just-in-time compilers;
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High Performance Computing, Common Lisp, Compilers, SIMD
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1 INTRODUCTION

For the last 50 years, the performance of our computers has dou-
bled roughly each 20 months — an effect known as Moore’s law.
However, Gordon Moore’s original prediction in 1965 was never
about performance, but about the complexity of integrated circuits.
In other words, the transistor count and resulting complexity of
our computers has grown exponentially for more than 50 years.
Translating this transistor count into performance is not for free.
It led to the introduction of superscalar execution, speculative ex-
ecution, vector instructions, caches, out-of-order execution, simul-
taneous multithreading, multicore CPUs, cache coherent NUMA
domains, hybrid hardware and distributed systems. We expect
to see even more such technologies, now that our semiconductor
manufacturing processes start to hit physical limits.

Each of these technologies places a burden on the performance-
aware programmer. The time it takes to develop efficient, parallel

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
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software grows at a steady pace. Today, developing a physics sim-
ulation to efficiently utilize a parallel machine often takes longer
than a PhD thesis. The consequence is that many important scien-
tific problems are not solved due to a lack of software.

To address this important issue, we propose a programming
model where the software sacrifices a portion of its resources at
runtime to remove the burden of parallel programming entirely
from the user. In this model, it must be possible to reliably predict
the complexity of future tasks and optimize the schedule, memory
layout and code accordingly. The goal is not to develop another
general purpose programming language, but to provide a special
purpose tool for structured, inherently parallel programs. In its do-
main, it should rival human expert programmers in skill, but act in
a timeframe of microseconds. The result of these considerations is
the library Petalisp’.

2 PREVIOUS WORK

The idea to develop specialized programming models for data paral-
lel programming is not new. There are dedicated array languages,
such as APL (Iverson 1962) and its descendants, data parallel ex-
tensions for imperative languages, such as High Performance For-
tran (Forum 1997), Fortran coarrays (Reid 2010) and CUDA (Nick-
olls et al. 2008) and fully developed general purpose languages
with particular support for parallel computing, such as SISAL (Mc-
Graw et al. 1983), ZPL (Snyder 2007), NESL (Blelloch et al. 1994),
SAC (Grelck and Scholz 2007), SequenceL (Nemanich et al. 2010),
Chapel (Chamberlain et al. 2007), X10 (Charles et al. 2005) and
Fortress (Steele 2006). The Lisp language alone spawned plenty of
research on parallel computing, such as Qlisp, Multilisp, PaiLisp,
Concurrent Scheme and Parcel (Ito 1990), as well the data paral-
lel Lisp dialects *Lisp (Massar 1995) and Connection Machine Lisp
(Steele and Hillis 1986).

Our work has been influenced by the design decisions and ex-
periences with most of these tools, but also differs in some signifi-
cant aspects. The pivotal difference is that Petalisp only ever gen-
erates and compiles code at runtime. This increases the compiler’s
knowledge far beyond what any ahead-of-time compiler can hope
to achieve. Our main challenge will be to keep the resulting run-
time overhead within reasonable bounds.

3 USING PETALISP

Data structures are a fundamental concept in computer science. In
classical Lisps, this role is filled by the cons function. While ele-
gant, this approach produces data structures that are far too hetero-
geneous for any automatic parallelization. Instead Petalisp oper-
ates exclusively on strided arrays. Strided arrays are an extension

Lwww. github.com/marcoheisig/Petalisp

ELS 2018



ELS’18, April 16-17 2018, Marbella, Spain

of classical arrays, where the valid indices in each dimension are
denoted by three integers: The smallest admissible index, the step
size and the highest admissible index. More precisely, we define
strided arrays as:

Definition 1 (strided array). A strided array in n dimensions is a
function from elements of the cartesian product of n ranges to a
set of Common Lisp objects.

Definition 2 (range). A range with the lower bound xj, the step
size s and the upper bound xy7, with x, s, xy € Z, is the set of
integers {x € Z | x < x <xy A (Fk €Z)[x =xp + ks] }.

As a convenience feature, Common Lisp arrays and scalars are
automatically converted to Petalisp strided arrays when necessary,
rendering the distinction almost invisible to the user.

Working exclusively with strided arrays allows us to perform
many domain-specific optimizations that are not possible in the
general case. Our philosophy is that a reliable tool for a narrow
domain is more useful that a mediocre general-purpose library. Be-
sides, working with arrays is a relatively common case in many dis-
ciplines, such as image processing, data analysis or physics simula-
tion. Finally, we want to point out that strided arrays may contain
objects of any type, e.g. conses or hash tables.

3.1 Index Spaces

In order to denote strided arrays of a particular size, or to select a
subset of the values of a strided array, we introduce index spaces
as tangible objects. Index spaces can be created using the notation
shown in figure 1.

(o) ; the zero-dimensional space
(c (018) (0618)) ; index space of a 9 X 9 array
(o (0 8) (0 8)) ; ditto

(o (10 2 98)) ; all even two-digit numbers
(o6 (x0 2 xN)) ; using variable bounds

(0 (123) (123) (12 3));cornersofa3x3x3cube

Figure 1: A notation for strided arrays index spaces.

3.2 Transformations

A crucial difference between Petalisp and many other parallel pro-
gramming models is that the motion of data is restricted to affine-
linear transformations and permutations. This design strikes a bal-
ance between the expressiveness on the one hand and the need
to perform accurate code analysis on the other hand. To denote
such transformations, we introduce transformations themselves
as instances of a subclass of funcallable-standard-object
and choose a notation for them that is deliberately similar to a
lambda form. The body forms of a transformation may contain ar-
bitrary Common Lisp code, as long as the net effect is that of an
affine-linear operator?. Examples of transformations are given in
figure 2.

There is no magic involved here — we evaluate the forms multiple times to uniquely
determine all coefficients of the transformation. With some further evaluations, we
can even detect and report most functions that are not affine-linear.

ELS 2018
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(t () () ; mapping the empty space to itself
(t (1) ((+ 1 a))) ; shifting all indices by a

(Tt (1) ((* 2 i))) ; doubling all indices

(t (1 3) (3 1)) ; switching 1st and 2nd dimension
(T (1 j) (1 j 2)) ;increasing the dimension

(t (1 1) (1)) ; decreasing the dimension

Figure 2: A notation for affine transformations.

Affine-linear transformations are automorphisms with many de-
sirable properties: They can be stored using only three rational
numbers per dimension and the composition and inverse of such
transformation always exists and is again affine-linear. This knowl-
edge permits our implementation to perform surprisingly smart
code transformations later on.

3.3 Moving Data

The most important tool for data creation and movement is the ->
function3. It takes any array or scalar as its first argument and
produces a new data structure according to the supplied transfor-
mations and index spaces. Each index space is either interpreted as
a selection of a subset, or as a broadcasting operation — depending
on whether it is smaller or larger of the current index space.

(->0 (o (6 9) (06 9))) ;a10Xx 10 array of zeros
(-> #(2 3) (o (0 0))) ;the first element only
(-> A (t (1 j) (j 1))) ;transposing A

Figure 3: Using the -> function.

Two further functions are provided to combine the values of
several arrays into a single one. The fuse function creates an array
containing the combined values of several supplied arrays. This
requires that the supplied arrays are non-overlapping and that the
union of their index spaces is again a strided array index space.
The fuse* function is almost identical, yet permits overlapping
arguments, in which case the values of the rightmost arguments
are chosen. Usage of these functions is illustrated in figure 4.

(defvar B (-> #(2) (Tt (1) ((1+ 1)))))

(fuse #(1) B) ; equivalent to (-> #(1 2))
(fuse #(1 3) B) ;an error!

(fuse* #(1 3) B) ;equivalentto (-> #(1 2))
(fuse* B #(1 3)) ;equivalentto (-> #(1 3))

Figure 4: Using fuse and fuse*.

3.4 Two Types of Parallelism

Up to now, we have shown how strided arrays can be created,
moved and combined, but not how to operate on them. Inspired by
CM-Lisp (Steele and Hillis 1986), we provide a function a to apply

3This function name seems hardly ideal. We welcome any constructive discussion
regarding the API of Petalisp.
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an n-ary function to n supplied data structures and a function B to
reduce the elements of a strided array along its last dimension with
a given binary function, as seen in figure 5. These functions are es-
sentially the parallel counterparts of map and reduce. A small,
but crucial difference is that the functions passed to a and B must
be referentially transparent.

(o0 #'+ 2 3) ; adding two numbers
(¢ #'+ A B C) ;adding three arrays element-wise
(a #'sin A) ; the sine of each entry

(B #'+ #(2 3)) ;adding two numbers
(defvar B #2A((1 2 3) (4 5 6)))
(B #'+ B) ; summing the rows of B

Figure 5: The functions a and B.

3.5 Triggering Evaluation

The observant reader might have noticed that, so far, we have not
shown any results of a call to a Petalisp function. This is where
the lazy, functional nature of the language comes into play. Each
result is an instance of a subclass of strided-array, whose di-
mension and element type are known, but whose values have not
been computed. This behavior is illustrated in figure 6.

(-> #(1 2 3))
=>#<strided-array-immediate #(1 2 3)>

(o0 #'cos #(4 5 6))
=>#<strided-array-application t (o (0 1 2))>

(->1 (o (228)))
=>#<strided-array-reference bit (o (2 2 8))>

Figure 6: Petalisp calls return unevaluated strided arrays.

The reasoning behind this lazy semantics is that the high-level
behavior of parallel algorithms is often independent from the con-
tents of the data structures they manipulate. Whenever actual ar-
ray values are required, their evaluation must be triggered explic-
itly. To do so, we provide a function compute to force evaluation
and return a Common Lisp array with the contents of the given
strided array. For ease of use, any array strides and starting in-
dices are stripped in the process and zero dimensional arrays are
converted to corresponding scalars. Usage examples are shown in
figure 7.

(compute (-> 0.0 (o (0 1)))) => #(0.0 0.0)
(defvar A #(1 2 3))

(compute (-> A)) = #(1 2 3)
(compute (B #'+ A)) = 6

(compute (-> A (t (i) ((- 1))))) =>#(3 2 1)

Figure 7: Using the compute function.
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1 (B #'+

2 (d #'*

3 (-=>A (t (mn) (m1n)))
4 (->B (t (n k) (1 kn)))))

Figure 8: The matrix multiplication of matrices A and B.

As an optimization, Petalisp also features another function —
schedule — that takes any number of strided arrays as arguments
and returns immediately. Its sole purpose is to hint that these val-
ues should be computed asynchronously. This way, it is possible
to overlap ordinary Lisp computation and Petalisp computation in
many cases.

3.6 Example: Matrix Multiplication

The preceding sections exhaustively describe the API of Petalisp.
To increase confidence that these few functions and macros are in-
deed sufficient to denote complex programs, we do now describe
an implementation of the product C of two matrices A and B, ac-
cording to the following definition:

n
Cij = ), AipBpj @
p=1

The equivalent Petalisp program is given in figure 8. It starts by
reshaping A and B to three dimensional arrays of size mx1Xxn and
1 X k X n, respectively. Then it relies on the implicit broadcasting
of a to obtain a m X k X n cube of the products of the elements
of A and B. It then uses the B function to sum the elements of
the last dimension of this cube to obtain the m X k result matrix
C. While this notation is hardly intuitive, it perfectly captures the
data parallel nature of the problem and is almost as short as the

original definition.

4 IMPLEMENTATION
4.1 Evaluation of Petalisp Programs

The evaluation of Petalisp programs consists of two phases. In the
first phase, ordinary Common Lisp code calls Petalisp API func-
tions to define strided arrays. Each strided arrays is an ordinary
CLOS object that tracks how its elements could be computed from
the values of other strided arrays. In the second phase, the eval-
uation of certain strided arrays is initiated by a call to compute
or schedule. From this point on, we exploit the fact that each
strided array and its inputs can also be viewed as nodes in a data
flow graph. Our implementation differentiates between five differ-
ent kinds of nodes:

e immediate Values of these nodes can be accessed in
constant time, e.g. because they are internally stored in
a Common Lisp array.

o application These nodes represent the element-wise ap-
plication of a function of n arguments to n strided arrays.

e reduction These nodes represent the reduction of the
last dimension of a given strided array with some binary
function.
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e fusion A fusion node represents a strided array contain-
ing all the values of a given set of non-overlapping strided
arrays.

o reference These nodes represent a selection of a subset
of the values of a strided array, a transformation of the
index space of a strided array, or a broadcasting operation.

These five kinds of nodes exhaustively define the intermediate
language that is passed to our compiler. We further impose the
restriction on the user, that all Common Lisp functions that are
used to construct application or reduction nodes must be referen-
tially transparent. The result is a dream come true for any com-
piler writer — our intermediate language has only five statements,
no control flow and is far from Turing-complete. An example of
such a data flow graph is given in figure 9.

The price we have to pay for this simplicity is that each desired
operation must be constructed, compiled and executed at runtime.
Furthermore there is, at least conceptually, no reuse of compiled
code. Each program is immediately discarded after the evaluation.
And finally, each conditional statement that depends on the value
of a strided array introduces significant latency — at least as long
as it takes to return the value to Common Lisp, perform the test,
assemble a new Petalisp program and compile it.

Given these considerations, we see that the latency and through-
put of our compiler completely determines the applicability of our
method. In the next subsections, we will discuss how we deal with
this challenge.

4.2 Type Inference

We implemented a simple type inference engine to estimate the
return type of known functions. Known functions are these from
the CL package and functions that have been explicitly introduced
by the user. Because we only ever deal with data flow graphs, in-
ferring the element type of each node can be done directly during
node creation, using the type information of its inputs. Our type
system is pragmatic in that it only considers those types that can
be represented as a specialized array by the host Common Lisp im-
plementation. Luckily, this usually includes floating-point num-
bers and complex floating-point numbers, which are particularly
relevant to numerical applications.

4.3 Data Flow Graph Optimization

Conceptually, the API functions a, B, fuse, fuse* and -> allocate
one or more data flow nodes to express the relation between the
values of their inputs and output. To reduce the number of data
flow node allocations and also the size of the programs passed to
the compiler, we perform many optimizations already at node cre-
ation time. In particular, we perform the following optimizations:

e Consecutive reference nodes can be combined into a sin-
gle reference node, using the functional composition of
their transformations and by determining the appropri-
ate transformed subspace. This is unconditionally possi-
ble, because all Petalisp transformations are known to be
affine-linear.

e Reference nodes that neither transform, nor broadcast, nor
select only a subset of their input are replaced by their in-
put.
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e Fusion nodes with a single input are meaningless and can
be replaced by their input.

e Application nodes whose inputs are immediate nodes with
only a single element are eagerly evaluated.

One consequence of these optimizations is that there can never
be more than a single consecutive reference node. Or put differ-
ently: User code can use any level of indirection, like switching
from zero-based arrays to one-based arrays or using different co-
ordinate systems, without any performance penalty.

4.4 Kernel Creation

In our terminology, a kernel is a computation that is identically
applied to all elements of a certain iteration space. Each kernel
can reference any number of arrays and write to a single target
array. The address computation of each array reference in a ker-
nel must be an affine-linear function of the current point in the
iteration space. A trivial way to obtain such kernels would be to
turn each application, reduction and reference node into a kernel
and each fusion node with n inputs into n kernels. However, the
performance of this approach would be abysmal — each function
call would reside in its own kernel and the result of each operation
would have to be written to main memory.

Our challenge is now twofold: We want to determine kernels of
maximal size and we want this algorithm to be extremely efficient.
The size of the kernel is important, because data within a kernel
can be passed via CPU registers instead of main memory. The ker-
nel creation efficiency is a concern because the partitioning of data
flow problems into kernels is a non-parallelizable bottleneck of ev-
ery Petalisp program.

The first step of our algorithm is the detection of critical nodes.
In our terminology, a critical node is a node that is referenced by
multiple other nodes, or appears as the input of a broadcast oper-
ation. These nodes are the only ones that must be stored in main
memory to avoid redundant computation. We obtain these nodes
with a single traversal of the data flow graph, using a hash table to
keep track of the users of each node.

Once the set of critical nodes has been found, we know that all
remaining nodes have at most one user. As a result, each critical
node, together with all its inputs up to the next critical node, forma
tree. Figure 9 is an example of such a tree, where the only critical
nodes are the immediate nodes and the final fusion node. Each
such tree can be further simplified by lifting all reference nodes
upwards until they reach the leaf nodes and merging them into
a single one. Additionally, all fusion nodes can be eliminated by
splitting the space of the target node into suitable fragments. Each
of these fragments is now the root of a tree whose only interior
nodes are application and reduction nodes and where each leaf is
a single reference to a critical node.

In the final step, each fragment space of each critical node is
turned into its own kernel. For the example in figure 9, we ob-
tain three kernels, corresponding to the three inputs of the fusion
node. The first two kernels simply copy boundary values from
some other immediate. The third kernel, that is executed for all
interior points of the grid, computes the sum of four references to
some other array, multiplies it by 0.25 and stores it at the respec-
tive place in the target array.
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Figure 9: The data flow graph of a single Jacobi iteration on a 10x10 grid.

4.5 Modular Backends

Up to this point, all considerations were independent of the target
hardware. But for the next steps — scheduling and code genera-
tion — the available resources are significant. Modeling these re-
sources is a challenging problem. Modern hardware is increasingly
heterogeneous, with multiple cores, sockets and special purpose
accelerators. This problem is amplified in the case of distributed
computing.

Our solution is to introduce a flexible, CLOS-based protocol for
execution contexts. Every call to schedule or compute occurs in
the context of a particular execution context we call backend. A
backend is a CLOS object, featuring a single generic function as
entry point. This method receives a list of nodes and turns them
asynchronously into immediate nodes. It returns a request object
to wait for the asynchronous computation to finish.

This approach is essentially a variant of Context-oriented pro-
gramming (Hirschfeld et al. 2008). Petalisp programs are always
executed in the context of a particular backend. One of the bene-
fits of modeling the target platform this way is that functionality
like the scheduling algorithm or the caching of compiled code can
be shared between all backends by means of inheritance.

Our implementation contains already several specialized back-
ends. In particular, we provide a slow, obviously correct reference
backend and a fast backend that generates optimized Lisp code and
uses the Lisp compiler of the host system. The latter has been used
to conduct the performance measurements in section 5.

4.6 Scheduling

Once a data flow graph has been partitioned into kernels and ker-
nel targets, it is passed to a particular backend for execution. The

job of the backend is now to derive a valid order of execution and
memory allocation scheme.

At the moment, the scheduling strategy of our implementation
is to evaluate each critical node in depth-first order of dependen-
cies. This simple technique is sufficient for many iterative algo-
rithms, where there is only a single, long dependency chain. We
intend to use a more sophisticated scheme in the future. For mem-
ory management, we use a memory pool, where each allocation
first checks whether an array of suitable size and element type is
already in the pool and allocates one otherwise. Then we use a ref-
erence counter for each array and add it back to the memory pool
once this counter reaches zero. This scheme excels for algorithms
with many same-sized intermediate arrays, but is wasteful in the
general case.

4.7 Kernel Evaluation

The final step in the evaluation of a Petalisp program is the evalu-
ation of individual kernels. At this point, data dependencies and
memory management have already been taken care of by the sched-
uler and the only remaining task is to generate fast code for each
kernel, compile it, and execute it for the given iteration space. Given
that kernels are the smallest unit of work in our system, it seems
prohibitively expensive to generate and compile code on each in-
vocation. Mitigating this problem is a key concern that decides
whether our evaluation model is viable or not.

We solve this problem by using aggressive memoization. From
each kernel, we extract all information we need to generate fast
code, i.e. the approximate size of the iteration space, the names of
operators with inline information and the relative offsets and ele-
ment types of each array reference. We call this structure a recipe.
Each recipe is stored using a specialized variant of hash consing,
such that similar recipes share most of their structure and such that
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identical recipes are eq to each other. The recipe of a kernel is then
used as sole input to the code generator, which caches its compiled
results in a hash table. Apart from the first use of a recipe, evalu-
ation consists of a single lookup in an eq hash table to obtain the
compiled recipe and the application of that compiled recipe to the
correct iteration space, inputs and non-inlined function handles.

4.8 Code Optimization

If the recipe of a kernel is not found in the code generator cache,
the backend has to generate, compile and cache such code. Com-
piling and caching are trivial in Common Lisp, because the lan-
guage standard provides functions for both tasks (compile and
gethash). It remains to generate efficient Common Lisp code for a
particular problem. Because kernel recipes are deliberately similar
to S-expressions, a straightforward translation can be done using
only a few lines of code. Unfortunately this task is complicated by
the limitations of the freely available Common Lisp compilers that
we use (CCL and SBCL). Neither of these compilers emits efficient
address computations for references to multi-dimensional arrays.

The problem with multi-dimensional address computation is that
we want the compiler to move as much as possible of the index
computation of aref outside of the innermost loop. Our solution
is to perform this lifting of loop invariant code ourselves. We di-
rectly emit calls to row-major-aref with explicit address compu-
tation. We then determine for each subexpression the outermost
loop on which it depends, move the expression to this loop, bind
its value to a temporary variable and use this temporary variable
instead. While doing so, we also perform common subexpression
elimination where possible. The result is that we emit Lisp code
that is often considerably faster than manually written code.

As a final optimization, we parallelize the outermost loop of
each kernel whose iteration space exceeds a certain size. To do
so, we use the library lparallel. The decision procedure when and
how to parallelize is, in its current state, far from ideal and more
intended as a proof of concept. Nevertheless it can significantly
accelerate computations on large domains.

5 PERFORMANCE

In the previous sections, we have shown that Petalisp offers a high
level of abstraction, but with a potentially high runtime overhead.
In this section, we want to quantify this overhead and compare the
performance of Petalisp code with other well known technologies.

5.1 Jacobi’s Method

The benchmark program that we will use throughout this section is
a simple variant of Jacobi’s method. It is an iterative algorithm for
solving elliptic partial differential equations. We will not discuss
its mathematical properties in detail. For the following consider-
ations, it is sufficient to note that it produces a sequence of grids
of identical size, where the value of each interior grid point is the
average of the values of its four neighboring points in the previ-
ous grid. In terms of computation, it consists of an update rule,
where for each interior point, four values are loaded, the sum is
computed with three additions, then turned into the average by
one multiplication and finally stored at the current position.
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1| (defun jacobi (u iterations)
2 (let ((it ; the interior
3 (o* u ((+ start 1) step (- end 1))
4 ((+ start 1) step (- end 1)))))
5 (loop repeat iterations do
6 (setf u
7 (fuse* u
8 (o #'* 0.25
9 (o #'+
10 (->u (Tt (L 3) ((1+ 1) j)) it)
. (->u (T (i) ((1- 1) j)) it)
2 (->u (Tt (L 3) (L (1+ j))) it)

13 (->u (Tt (13) (1 (1-3))) it)))))
14 finally (return u))))

Figure 10: Jacobi’s method in Petalisp.

1| def jacobi(src, dst):

2 dst[1:-1, 1:-1] =\

3 0.25 * ( src[0:-2,1:-1]
4 + src[2:,1:-1]

5 + src[l:-1,0:-2]
6 + src[l:-1,2:]1 )
7 return dst

9| for i in range(iterations // 2):
10 jacobi(src, dst)
n jacobi(dst, src)

Figure 11: Jacobi’s method in Python.

5.2 'The Benchmark Setup

We implemented the same algorithm using three different tech-
niques. Our first implementation uses Petalisp on SBCL 1.3.21. It
is shown in figure 10. The second implementation (figure 11) uses
Python 3.5.2 and the numerics library NumPy, version 1.11. The
third implementation (figure 12) is written in C++ and compiled
with GCC version 5.4 and highest optimization settings. It serves
upper bound of we can hope to achieve some day. Our benchmark
system is an Intel Xeon E3-1275 CPU, running at 3.6GHz.

To ease comparison, each implementation is run single-threaded.
Furthermore, we measure two variants of the C++ code. Both are
compiled with highest optimization settings (-O3), but only one
of them uses native optimizations(-march=native). We do this, be-
cause we aim to reach the performance of the non-native code in
the near future, while reaching the other variant will require some
changes to SBCL itself, especially adding support for AVX2 opera-
tions.

5.3 Benchmark Results

The results of our benchmarks are given in figure 13. We measured
the floating point operations per second for different problem sizes,
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void jacobi(size t h, size t w,

~

3 double* src,

4 double* dst) {

5 for(size t ih = 1; ih < h-1; ++ih) {

6 for(size t iw = 1; iw < w-1; ++iw) {
7 size t 1 = ih * w + iw;

8 dst[i] = 0.25 * ( src[i+l]

9 + src[i-1]

10 + src[i+w]

1 + srcli-wl);}3}}

13| for(size t 1 = 0; 1 < iterations/2; ++i) {
14 jacobi(w, h, src, dst);
is jacobi(w, h, dst, src);}

Figure 12: Jacobi’s method in C++.

starting from a grid with 8 x 8 double precision floating point val-
ues, increasing the number of grid points by powers of two, until
the problem domain started to exceed the cache size of our CPU.

On a first glance, the performance of Petalisp seems disappoint-
ing in comparison. However, NumPy and C++ are widely used
tools with decades of optimization under the hood, while Petalisp
is in an early stage of development. The numbers shown here are
some of the first Petalisp benchmarks ever conducted. Our cur-
rent implementation is naive in many respects and would benefit
alot from improved scheduling, inter-kernel optimization and vec-
torization. Nevertheless, Petalisp already manages to outperform
NumPy (which calls optimized C code internally), and lands within
50% of non-vectorized C++ code. In this light, we are extremely
satisfied with these early performance results.

The only case where Petalisp performs much worse is for small
domains. This is not surprising, given the constant overhead of
about 200 microseconds per Jacobi iteration just to analyze and
schedule the code (a number we hope to decrease in the future).
But small domains are not the focus of our work. We are after the
large problems, where this constant overhead amortizes quickly.
And indeed our benchmarks confirm that we reach this point al-
ready at problems of about one megabyte in size.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new programming technique, where a purely
functional programming language with inherent parallelism and
lazy semantics is integrated into the existing general purpose lan-
guage Common Lisp. We have implemented said approach and
studied its applicability to several real-world problems. Thereby,
we have made the following pleasant observations:

e Our compilation strategy is feasible. In order to have max-
imal knowledge about the dynamic state of each computa-
tion, we defer compilation of compute-intensive parts un-
til the very last moment. Yet by using efficient algorithms,
asynchronous compilation and different kinds of memo-
ization, we manage to compile and execute more than 10°
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Figure 13: Single-threaded floating point operations per sec-
ond for Jacobi’s method on a square domain.

parallel Petalisp instructions per second, with a latency of
less than 100 microseconds.

e By moving all optimization and analysis to the runtime,
our compiler has total knowledge. It can predict the exact
number of loads and stores, which instructions are used
and what bottlenecks may arise. Furthermore, it has un-
precedented freedom in the choice of memory layouts and
execution strategy. This is an enormous strategic advan-
tage over other optimizing compilers.

e With about 5000 lines of code, our implementation is —
with respect to the complexity of the task — simple and
maintainable. We attribute this to the decision to integrate
Petalisp tightly into Common Lisp and building on exist-
ing libraries and infrastructure where possible.

e Even in the current, early stage, our system is able to out-
perform the existing numerics framework NumPy.

e Our programming model leads to a clean separation be-
tween description and execution. Petalisp reliably normal-
izes every description of a particular algorithm to the same
intermediate representation, before determining a reason-
able execution strategy for it. The programmer can focus
entirely on correctness and clarity.

The last of these points — the separation of concerns — is the
most dear to us. In many fields of computer science, the need for
high performance encourages programmers to mix optimization
and description. Many of these optimizations, e.g. special purpose
memory layouts, are pervasive. They affect many functions and
greatly increase the cognitive burden on the developer. Our long
term goal is to make Petalisp a viable alternative in these cases, by
achieving competitive performance to hand-tuned applications.

A lot of work remains until the full potential of this program-
ming model is unlocked. In particular we intend to add the follow-
ing features over the next few years:
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e Performance Modeling Before doing further improve-
ments to the code generator and scheduler, we need a way
to determine the performance characteristics of a particu-
lar computation. In particular we care whether some code
is memory bound or compute bound. We intend to use the
Roofline (Williams et al. 2009) or ECM (Stengel et al. 2015)
model.

e Sophisticated Scheduling Currently, we evaluate each
array in depth-first fashion according to the data depen-
dency graph. The new scheduler should utilize the results
of the performance model to determine an order of execu-
tion and to change memory layouts to optimize locality.
In particular, we want to be able to apply temporal block-
ing on arbitrary memory-bound computations.

e Improved Shared-Memory Parallelization Instead of
naively parallelizing the outermost loop of a computation,
we want to base the division of labor on the memory ac-
cess patterns of a computation and on the result from the
performance analysis.

¢ Distributed Memory Parallelization The potential for
automatic parallelization in Petalisp is not limited to a sin-
gle node. Indeed, the whole system has been carefully
designed to permit concurrent execution on multiple ma-
chines. We intend to use the message passing standard
MPI for distributed communication.

e Vectorization Once performance analysis detects that
a particular step is compute bound, our code generator
should use vectorized instructions when possible.

e GPU Offloading We are not aware of any existing tech-
nique to run arbitrary Common Lisp functions on GPUs.
Nevertheless we could determine the subset of Petalisp
kernels that use only primitive hardware operations and
offload their evaluation to the GPU. Again, the capability
of Petalisp to exactly predict the cost of its operations can
help to make qualified decisions when such offloading is
profitable.

The name “Petalisp” emphasizes our commitment to provide an
enjoyable programming model for petascale systems, i.e. systems
able to execute around 101® operations per second. With our cur-
rent results ranging between 108 and 100 operations per second,
we still have a long way to go. Yet the capabilities of our system
so far make us confident that we may eventually succeed.
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ABSTRACT

Using a garbage collected language poses a challenge for latency-
sensitive applications. The garbage collector is an integral part
of a lisp implementation; optimizing or replacing the GC may be
infeasible without a substantial rewrite of the lisp compiler/runtime.
By taking advantage of the container which many modern processes
run inside we can tune the garbage collector only to keep the lisp
process’s heap within the bounds provided by the container. We
make 3 simple changes to SBCL’s generational garbage collector
which result in improved application performance. We find that
the application’s runtime throughput and latency are improved,
with less time spent in the GC, and that behavior in a multi-core
environment is improved.
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1 INTRODUCTION

During early startup of a lisp process, the Steel Bank Common Lisp
(SBCL) GENerational Conservative Garbage Collector! (gencgc)
uses mmap () to allocate the entire dynamic space that will be ac-
cessible for use by the lisp heap for the life of the process which
accounts for the process’s its virtual size (VSZ). This space is di-
vided into equal size cards or pages, which represent the smallest
unit of heap which can be allocated or garbage collected?. Each lisp
object on the heap is assigned to one or more of these GC cards.
Once a lisp process has allocated (consed) a specified number
of bytes the SBCL runtime halts all threads and triggers garbage
collection. The GC transitively searches objects which are live, or
presumed live (in the case of objects residing in an older GC gen-
eration), looking for references to other objects, which are thus
enlivened. Surviving objects are copied from their existing GC card
to a new card; objects which are not copied to a new card are

ISBCL also supports a precise or Cheney GC implementation on some platforms. This
paper does not address that GC implementation.
#32kB on x86-64
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garbage. An object which survives garbage collection may be pro-
moted to an older GC generation, according to GC policy, meaning
that it may be presumed live during a subsequent GC. Generations
are numbered 0 to 5, with generation 0 holding the newest objects.
When SBCL finds it needs to collect garbage from a sufficiently old
generation (a large GC, typically: older than gen 1) it releases all
unused GC cards to the kernel via madvise() (i.e. so they are no
longer are part of the process’s resident space (RSS)).

2 PROBLEM

SBCL’s gencgc assumes several optimizations which make it very
useful for a general purpose computing: objects typically become
garbage in a roughly LIFO order; the existence of collectable garbage
is typically correlated with having allocated new objects; the flexi-
bility of having multiple generations allows the runtime to scale
to an application which may have unpredictable memory use over
time; and the GC can usually prevent the application from prema-
turely exhausting its preconfigured dynamic space size (e.g. due to
fragmentation), which would cause the process to fail. However
the constraints of the garbage collector make it suboptimal for a
latency-sensitive application — especially one running on a modern
platform with multiple processing cores and finite memory. One
root of these problems is that application code cannot run concur-
rently with garbage collection. Compounding this problem, the
runtime may trigger GC even if there is no garbage to collect or if
system memory reserved for the application is not yet scarce, and
while GC is running, the process utilizes only a single CPU core,
even if the application is otherwise multithreaded and capable of
utilizing many cores. System memory utilization is further com-
promised by the GC’s behavior, which may not return memory to
the kernel when memory reserved for the process is running out,
and when the GC does madvise() a GC card back to the system,
a subsequent write to the returned GC card requires the kernel to
remap the page, which takes time.

3 IMPROVEMENTS

We can significantly improve the performance characteristics of the
SBCL garbage collector with only very minor code changes to the
gencgc implementation. We propose three optimizations. The first
two optimizations cause gencgc to be more responsive to the host
platform in which the lisp process runs. These optimizations directly
benefit from use of a container API, used to manage the memory
and processing resources of the application by providing virtual
environment as opposed to "bare metal". The third optimization
allows gencgc to take advantage of information from the application
logic for some types of programs. The optimizations are best suited
to applications that process logically independent work items (e.g.
an RPC server or part of a data processing pipeline).
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3.1 Optimization #1: Trigger GC based on host
memory constraints

The first optimization is to use memory utilization metrics to indi-
cate to the lisp runtime when collecting garbage is actually required
to avoid an out of memory condition. This entails configuring up to
two memory thresholds. For an application running within a con-
tainer, these thresholds are most logically expressed as a fraction of
the container’s total memory size. When the container’s memory in
use crosses a specified threshold, the lisp process is notified of the
impending need to collect garbage. These triggers may replace the
standard behavior of beginning garbage collection after allocating
a fixed number of bytes on the lisp heap.

At the first threshold, free memory is low and garbage should
be collected soon. The application is signaled that it should stop
processing additional work items. The application waits for out-
standing work items to complete, performs garbage collection, and
then resumes processing new work items. Deferring the GC until
the process is idle means the GC pause does not adversely affect
latency-sensitive processing.

At the higher threshold free memory is critical. The process
runs GC immediately, even if it has work items in progress. The
GC pause still imposes latency on concurrent work items, but the
work items have an opportunity to complete before the process
completely runs out of memory.

3.2 Optimization #2: Control when memory is
given back to the system.

SBCL gencgc’s conventional behavior is to release memory back
to the system only after a large GC. After such a GC it releases the
memory associated with all disused GC cards. This optimization
changes gencgc’s behavior to always release memory, but to only
release a number of GC cards sufficient to bring resident memory
below a specified threshold. As with optimization #1, if the appli-
cation runs inside of a container, the GC aims to shrink resident
memory below a given fraction of the container’s total memory size.
When gencgc has released enough GC cards to bring the resident
memory size below the specified threshold, the container provides
notification back to the lisp process that no further GC cards need
to be released.

SBCL gencgc® normally loops through free pages sequentially
from 0 up to the largest page index used, returning each contiguous
block of pages to the operating system. This loop is reversed, such
that the first card to be reused for subsequent heap allocations
would be the last card released back to the system, and the loop is
halted once enough pages have been released to bring the processes
resident size down below the specified threshold.

The target number of total GC cards held by the runtime after
garbage collection is allowed to float, as some of the process’s resi-
dent space is consumed by memory other than the lisp heap. This
approach allows the garbage collector to keep the application’s res-
ident size within acceptable limits, and avoids the penalty incurred
by the kernel remapping the GC card memory, unless and until the
lisp heap subsequently grows to exceed the previous threshold.

3Speciﬂcally, remap_free_pages().
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This optimization may be used in combination with optimization
#1, which allows the garbage collector to run when and only when
memory needs to be returned back to the system. Used together,
and with appropriate thresholds configured, the two optimizations
form a positive feedback loop: the GC runs only when too much
memory is in use, and every GC reduces the amount of memory in
use back to an acceptable level.

3.3 Optimization #3: A generational garbage
collector aware of application request
processing

Arena allocation or region-based memory management is an ap-
proach allowing a program to efficiently deallocate objects with a
known lifetime. Lisp doesn’t natively support arena allocation, but
an application which processes logically independent work items
can make use of SBCL’s garbage collector’s generation 0 to achieve
some of the benefit of allocation against a single arena. When the
GC runs while one or more work items are in progres