
Proceedings of the

12th European Lisp Symposium
Hotel Bristol Palace, Genova, Italy

April 1 – 2, 2019

In cooperation with ACM

Co-located with <Programming> 2019
Nicolas Neuss (ed.)

ISBN-13: 978-2-9557474-3-8
ISSN: 2677-3465

ii ELS 2019

Preface

Message from the Program Chair

Welcome to the 12thth European Lisp Symposium!

When Didier Verna asked me to be program chair for the ELS 2019, I felt frightened and honored
at the same time. Frightened, because I was not sure if I would have sufficient experience and
could afford enough time for doing this job. And honored, because the ELS conferences are an
important international meeting point for developers and users of my beloved programming
language Lisp.
What is Lisp? Lisp is the language which inspired the world of programming more than any
other language. It introduced a multitude of important features like interactivity and intro-
spection, functional programming, and automatic garbage collection. Although most of these
features have been imported into other languages, there is one important feature which can only
be copied by becoming a ‘Lisp’, namely the uniform syntax that is both a notation for code and
data! As a direct consequence, this property makes program transformation an easily accessible
tool for us Lisp programmers.
In fact, several of the contributions in these proceedings rely heavily on this feature. For exam-
ple, it is extremely convenient if you want to bootstrap a system, and some of our talks consider
this problem. It is also very helpful in program analysis and program rewriting, which is the
topic of further talks. And then it also opens up new roads towards high performance, because
it allows specialized code to be generated and compiled fast at runtime which is the topic of
another talk.
Because of this uniqueness of Lisp, I am convinced that Lisp will remain with us forever—
although people may call it by another name in the future. So—coming back to the beginning—
I fought down my initial fright and accepted the honor of being ELS program chair. I have
not regretted this decision, because I have had a lot of support: (1) there was an almost perfect
guide for managing ELS conferences which described everything necessary in detail, (2) the
well-established conference platform EasyChair made steps like collecting the program com-
mittee, paper submission and paper review really convenient, and (3) for any problems which
were beyond my knowledge, I obtained rapid help from Didier and other people from the ELS
steering committee.
Therefore, being ELS program chair was a pleasant experience, and I want to thank all who
made this happen: Didier, the steering committee, the program committee, the invited speakers,
and also all you authors for submitting good papers. Last but not least, I want to mention the
help from my friend and colleague Marco Heisig who—besides helping out in the program
committee—was always a source of inspiration and knowledge.

Erlangen, March 24, 2019 Nicolas Neuss

ELS 2019 iii

iv ELS 2019

Organization

Programme Chair

• Nicolas Neuss, FAU Erlangen-Nürnberg, Germany

Local Chair

• Davide Ancona, University of Genova, Italy

• Elena Zucca, University of Genova, Italy

Programme Committee

• Alberto Riva – University of Florida, USA

• Alessio Stalla – ManyDesigns Srl, Italy

• Breanndán Ó Nualláin – University of Amsterdam, Netherlands

• Charlotte Herzeel – IMEC, ExaScience Life Lab, Leuven, Belgium

• François-René Rideau – Alacris.io

• Leonie Dreschler-Fischer – University of Hamburg, Germany

• Marc Battyani – FractalConcept, France

• Marco Antoniotti – Universita Milano Bicocca, Italy

• Marco Heisig – FAU Erlangen-Nürnberg, Germany

• Pascal Costanza – IMEC, ExaScience Life Lab, Leuven, Belgium

• Patrick Krusenotto – Deutsche Welle, Germany

• Philipp Marek – Austria

• Pierre R. Mai – PMSF IT Consulting, Germany

• R. Matthew Emerson – thoughtstuff LLC, USA

• Sacha Chua – Living an Awesome Life, Canada

ELS 2019 v

Sponsors

We gratefully acknowledge the support given to the 12thth European Lisp Symposium by the
following sponsors:

Franz, Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
USA
www.franz.com

LispWorks Ltd.
St John’s Innovation Centre
Cowley Road
Cambridge, CB4 0WS
England
www.lispworks.com

EPITA
14-16 rue Voltaire
FR-94276 Le Kremlin-Bicêtre CEDEX
France
www.epita.fr

vi ELS 2019

www.franz.com
www.lispworks.com
www.epita.fr

Invited Contributions

The Lisp of the Prophet for the One True Editor

Stefan Monnier, Université de Montréal, Québec, Canada
While the editor war is long gone and Emacs’s marketshare has undoubtedly shrunk, it has
established itself as an important branch in the Lisp family of languages. In this talk, I will look
at what gave Emacs Lisp its shape, including what it took from its siblings and ancestors and
what makes it different.

Stefan Monnier is a professor in the Département d’Informatique et
Recherche Opérationnelle at the Université de Montréal where he works
on functional programming languages and type systems. He spends
the other 90% of his time contributing to Emacs, of which he was the
official maintainer from 2008 to 2015. He received his PhD from Yale
University in 2003.

20 More Years of Bootstrapping

Christophe Rhodes, England
Although its history is longer than this, the Steel Bank Common Lisp system was announced
to the world in 1999, with its distinguishing characteristic of being written in vanilla ANSI
Common Lisp explicitly described in the announcement. We provide a retrospective on 20
years of development, discuss some of the features SBCL provides and the rationale behind
them, and offer entirely speculative thoughts about the next 20 years of the project.

Christophe Rhodes received a PhD in maths and physics from Cam-
bridge in 2004, following which he combined other interests by research-
ing into computational understanding of music. A period working on
a startup, Teclo Networks, was followed by a period in academic man-
agement, being part of the team leading the Transforming Musicology
project and acting as Head of Department. He currently works as a
software engineer.

ELS 2019 1

2 ELS 2019

Guest Talk

Rebooting Racket

Matthew Flatt, University of Utah, USA
Racket started in 1995 as a fusion of two off-the-shelf C/C++ libraries. From there, things got
out of hand. We ended up building and maintaining a large programming language—with
ambitions that span from language design to performance, from research to production—on
an especially inelegant core implementation. After 2+ years of concerted effort, we have re-
built Racket’s core in a more maintainable form. It’s a story as old as programming, and this
particular instance looks like it will have a happy ending.

Matthew Flatt is a professor in the School of Computing at the Uni-
versity of Utah, where he works on extensible programming languages,
runtime systems, and applications of functional programming. He is
one of the developers of the Racket programming language. He received
his PhD from Rice University in 1999.

ELS 2019 3

4 ELS 2019

Program overview

Monday, 1.4.2019

09:15 Welcome
09:30–10:30 Stefan Monnier: The Lisp of the prophet for the One True Editor (ELS keynote)
10:30–11:00 Coffee break
11:00–11:30 Ryan Culpepper: Pattern-Based S-Expression Rewriting in Emacs
11:30–12:00 Léo Valais, Jim Newton and Didier Verna: Implementing Baker’s SUBTYPEP decision procedure
12:00–12:30 Irène Anne Durand and Robert Strandh: make-method-lambda revisited
12:30–14:30 Lunch
14:30–15:00 Jim Newton and Didier Verna: Finite Automata Theory Based Optimization
15:00–15:30 Marco Heisig: Lazy, parallel multiple value reductions in Common Lisp
15:30.-16:00 Coffee break
16:00–16:30 Mikhail Raskin and Christoph Welzel: Working with first-order proofs and provers
16:30–17:00 António Leitão: Plagiarism Detection for Lisp
17:00–17:30 Lightning talks
19:00 Reception at Aula Magna

Tuesday, 2.4.2019

09:00–10:00 Christophe Rhodes: 20 more years of bootstrapping (ELS keynote)
10:00–10:30 Irène Anne Durand and Robert Strandh: Bootstrapping Common Lisp using Common Lisp
10:30–11:00 Coffee Break
11:00–11:45 Nicolas Hafner. Shader Pipeline and Effect Encapsulation using CLOS
11:45–12:30 Robert P. Goldman and Ugur Kuter. Hierarchical Task Network Planning in Common Lisp
12:30–14:30 Lunch
14:30–15:30 Matthew Flatt: Rebooting Racket (Guest talk)
15:30–16:00 Coffee Break
16:00–16:30 Alessio Stalla: Symbols as Namespaces in Common Lisp
16:30–17:00 Didier Verna: Parallelizing Quickref
17:00–17:30 Lightning talks
17:30 Conference end

ELS 2019 5

6 ELS 2019

Session I: Emacs Lisp

Monday, 1.4.2019

09:30–10:30 Stefan Monnier: The Lisp of the prophet for the One True Editor (ELS keynote)
10:30–11:00 Coffee break
11:00–11:30 Ryan Culpepper: Pattern-Based S-Expression Rewriting in Emacs

ELS 2019 7

Pattern-Based S-Expression Rewriting in Emacs
Ryan Culpepper

Czech Technical University in Prague
ryanc@racket-lang.org

ABSTRACT
sexp-rewrite is an Emacs library for doing pattern-based rewrit-
ing of S-expression-structured code—ie, code in Lisp, Scheme, and
Racket. The library provides a simple but powerful pattern language
that enables users to define rewriting rules (called “tactics”) and
auxiliary nonterminals.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Development frameworks and environments;

ACM Reference Format:
Ryan Culpepper. 2019. Pattern-Based S-Expression Rewriting in Emacs. In
Proceedings of the 12th European Lisp Symposium (ELS’19). ACM, New York,
NY, USA, 3 pages. https://doi.org/10.5281/zenodo.2642093

1 INTRODUCTION
sexp-rewrite is an Emacs library that allows users to apply rewrit-
ing rules for S-expression structured program text. It also allows
users to define their own rewriting rules using a simple but ex-
pressive pattern language based on the syntax-parse notation for
macros (Culpepper 2012).

This section introduces sexp-rewrite by showing examples
of rewriting tactics included with sexp-rewrite for the Racket
programming language.

One example is the conversion of nested trees of if expressions
to cond expressions. Here is one transformation:

(define-sexprw-tactic if-to-cond
(if $test $then $else)
(cond [$test $then] !NL

[else $else]))

Another tactic rewrites let followed by an immediate if test:

(define-sexprw-tactic let-if-to-cond
(let ([$name:id $rhs])

(if $name:id $then $else))
(cond [$rhs !SL => (lambda ($name) !SL $then)] !NL

[else !SL $else]))

These tactics, along with a few others not shown here, make it
possible to transform a tree of ifs and lets into a cond expression
with a single command (Figure 1).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2642093

The Quack (Van Dyke 2002) major mode for Scheme and Racket
has a function for toggling the function definition at the cursor
between implicit and explicit lambda notation. For example:
(define (add1 n)

(+ 1 n))
⇔ (define add1

(lambda (n) (+ 1 n)))

The main elisp function implementing this transformation, quack-
toggle-lambda, is 74 lines, not including helper functions and
regular expressions defined elsewhere in quack.el.

Using sexp-rewrite, the editor transformations can be expressed
with two rewriting “tactics” of three lines each:1

(define-sexprw-tactic define-absorb-lambda
(define $name:id (lambda ($arg ...) $body:rest))
(define ($name $arg ...) !NL $body))

(define-sexprw-tactic define-split-lambda
(define ($name:id $arg ...) $body:rest)
(define $name !NL (lambda ($arg ...) !SL $body)))

Another example comes from SXML (Kiselyov 2004), which uses
a particular idiom for optional arguments: the formals include a rest
argument, then the procedure body starts with a let expression
that binds the optional argument to the first element of the rest
argument, if there is one, or a default value otherwise. In Racket
it is more idomatic (and efficient) to use the language’s built-in
support for optional arguments. For example:
(define (ddo:ancestor test-pred? . nums)

(let ((num (if (null? nums) 0 (car nums))))
(do-stuff-with test-pred? num)))

⇒
(define (ddo:ancestor test-pred? [num 0])

(do-stuff-with test-pred? num))

A tactic for translating the former to the latter is shown in Figure 2.
The tactic’s guard handles a case where a default value of null is
written as the rest argument (known to be null on that branch).

2 TACTICS AND NONTERMINALS
A tactic definition consists of a pattern, template, and optional
:with or :guard clauses:
(define-sexprw-tactic Name

Pattern WithOrGuard ... Template)

WithOrGuard = :with Pattern Template
| :guard GuardFunction

A :with clause performs an additional pattern match on the text
produced by an intermediate template. A guard procedure takes
an environment (an association list mapping attribute names to
matches) and returns either a singleton list with an environment
(possibly extended or modified) to accept or nil to reject.
1With this ∼1500 line supporting library.

8 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Ryan Culpepper

(if (not k)
(error)
(let ([x (assq k env)])

(if x (cdr x) (error))))

⇔
(cond [(not k) (error)]

[(assq k env) => (lambda (x) (cdr x))]
[else (error)])

Fig. 1. Conversion of if and let to cond

(define-sexprw-tactic define-rest-to-optional
(define ($name:id $arg:id $rest:id)

(let (($optional-arg:id (if (null? $rest:id) $default (car $rest:id))))
$body:rest))

:guard (lambda (env)
; If $default = $rest, rewrite to null; unsafe if refs to $rest remain.
(if (sexprw-entry-equal (sexprw-env-ref env '$default) (sexprw-env-ref env '$rest))

(list (cons (cons '$default (sexprw-template 'null env)) env))
(list env)))

(define ($name $arg ... [$optional-arg $default]) !NL $body))

Fig. 2. A tactic for optional arguments

A nonterminal definition consists of one or more patterns:

(define-sexprw-nt Name
MaybeAttrs
(pattern Pattern WithOrGuard ...) ...)

MaybeAttrs = ε
| :attributes (ATTR-NAME ...)

Pattern variables defined inside of a nonterminals patterns are
available as attributes of instances of the nonterminal.

A tactic name can also be used as a nonterminal name. In ad-
dition to the tactic’s pattern variables, it also exports an attribute
named $out with the result of the template. This makes it simple
to compose tactics.

The following built-in nonterminals are provided:
• id matches any atom (currently includes numbers, etc, too).
• pure-sexp matches a single sexp.
• sexp matches a single sexp, which may have comments

preceding it.
• rest matches the rest of the enclosing sexp, including com-

ments and terms; useful for function bodies, for example.

3 PATTERNS AND TEMPLATES
Rewriting tactics use patterns to match regions of text to which the
rewriting applies. Patterns bind pattern variables to subregions of
text and templates use pattern variables, literal text, and formatting
instructions to form the replacement text.

A pattern is one of the following:
• symbol matches that literal symbol. The symbol must not

start with a $ character.
• $name matches any S-expression and binds it to the pattern

variable $name.
• $name:nt matches an occurrence of the nonterminal nt and

binds it to the pattern variable $name.

• (pattern1 · · · patternN) (that is, a list of patterns—the
· · · are not literal) matches a parenthesized sequence of N
terms where each term matches the corresponding pattern.
• (!SPLICE pattern1 · · · patternN) matches a sequence

of N terms (non-parenthesized) where each term matches
the corresponding pattern.
• pattern ... (that is, a pattern followed by literal ellipses)

matches zero or more occurrences of pattern. The variables
within pattern are bound to a sequence of matches, and they
must be used under ellipses in the corresponding template.
• (!OR pattern1 · · · patternN) matches if any of the given

patterns match.
• (!AND pattern1 · · · patternN) matches if all of the given

patterns match.

The same forms are allowed for templates, except !OR and !AND
are not allowed, and pattern variables are written as $name in-
stead of $name:nt. The following additional template forms are
supported:

• $name.$attr produces the text bound to the attribute $attr
of the pattern variable $name, which must be bound to a
nonterminal the defines $attr.
• (!SQ template1 · · · templateN) encloses the results of

the N templates within square brackets.
• !NL prefers a new line before the next non-empty template.
• !SL prefers a new line before the next template only if its

contents span multiple lines.

The square-bracket and spacing instructions are helpful for produc-
ing idiomatically formatted output.

4 AVAILABILITY
sexp-rewrite is available at

https://github.com/rmculpepper/sexp-rewrite/

ELS 2019 9

Pattern-Based S-Expression Rewriting in Emacs ELS’19, April 01–02 2019, Genova, Italy

BIBLIOGRAPHY
Ryan Culpepper. Fortifying macros. Journal of Functional Programming

4-5(22), pp. 224–243, 2012.
Oleg Kiselyov. SXML. http://okmij.org/ftp/Scheme/SXML.html, 2004.
Neil Van Dyke. Quack. https://www.neilvandyke.org/quack/, 2002.

10 ELS 2019

Session II: Implementation

Monday, 1.4.2019

11:30–12:00 Léo Valais, Jim Newton and Didier Verna: Implementing Baker’s SUBTYPEP decision procedure
12:00–12:30 Irène Anne Durand and Robert Strandh: make-method-lambda revisited
12:30–14:30 Lunch

ELS 2019 11

Implementing Baker’s SUBTYPEP decision procedure
Léo Valais

Jim E. Newton
Didier Verna

lvalais@lrde.epita.fr
jnewton@lrde.epita.fr
didier@lrde.epita.fr

EPITA/LRDE
Le Kremlin-Bicêtre, France

ABSTRACT
We present here our partial implementation of Baker’s decision
procedure for subtypep. In his article “A Decision Procedure for
Common Lisp’s SUBTYPEP Predicate”, he claims to provide imple-
mentation guidelines to obtain a subtypep more accurate and as
efficient as the average implementation. However, he did not pro-
vide any serious implementation and his description is sometimes
obscure. In this paper we present our implementation of part of his
procedure, only supporting primitive types, Clos classes, member,
range and logical type specifiers. We explain in our words our un-
derstanding of his procedure, with much more detail and examples
than in Baker’s article. We therefore clarify many parts of his de-
scription and fill in some of its gaps or omissions. We also argue in
favor and against some of his choices and present our alternative
solutions. We further provide some proofs that might be missing
in his article and some early efficiency results. We have not re-
leased any code yet but we plan to open source it as soon as it is
presentable.

CCS CONCEPTS
• Theory of computation → Type theory; Divide and conquer ;
Pattern matching.

ACM Reference Format:
Léo Valais, Jim E. Newton, and Didier Verna. 2019. Implementing Baker’s
SUBTYPEP decision procedure. In Proceedings of the 12th European Lisp
Symposium (ELS’19). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
5281/zenodo.2646982

1 INTRODUCTION
The Common Lisp standard [1] provides the predicate function
subtypep for introspecting the sub-typing relationship. Every invo-
cation (subtypep A B) either returns the values (t t) when A is a
subtype of B, (nil t) when not, or (nil nil) meaning the pred-
icate could not (or failed to) answer the question. The latter can
happen when the type specifier (satisfies P) (representing the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2646982

(sb!xc:deftype keyword ()
'(and symbol (satisfies keywordp)))

Listing 1: The keyword type definition in Sbcl

type {x | P(x)} for some predicate and total function1 P) is involved.
For example, given two arbitrary predicates F and G, there is no
way subtypep can answer the question (subtypep ’(satisfies F)

’(satisfies G)).
However, some implementations abuse the permission to return

(nil nil). For example, in Sbcl 1.4.10 (the implementation we are
currently focusing our efforts on), (subtypep ’boolean ’keyword)

returns (nil nil), thus violating the standard2. The definition of
the keyword type is responsible for this failure: as shown in Listing 1,
it involves a satisfies type specifier3.

Another kind of problem for which subtypep’s accuracy matters
is the optimization of the typecase construct as shown in [7] and
[8]. The aim is to remove redundant checks in the construct and
the approach is to use binary decision diagrams. However, to build
such a structure, subtypep is repeatedly used. The unreliability of
the predicate leads here to many lost BDD reductions and therefore
to the generation of sub-optimal code.

Our implementation is still in active development, currently tar-
gets Sbcl and focuses almost entirely on result accuracy. It supports
primitive types, user-defined types (deftype, classes and structures),
member (and eql) type specifiers and ranges (e.g., (integer * 12)).
We present our strategy for implementing each one of these while
discussing how and why we decided or not to diverge from Baker’s
[3] approach—or potentially filling some gaps or unclear bits. No
optimization work has been done yet and the implementation still
has bugs and diverse issues, but we have found some encouraging
results about accuracy and even about efficiency.

2 THE COMMON LISP TYPE SYSTEM
2.1 Type specifiers
Common Lisp types are not manipulated directly. Instead, the type
to be manipulated is described using a type specifier. The type
specifier Domain-Specific Language (DSL) allows programmers
to describe types by writing S-expressions which obey some rules
described in the Common Lisp standard [1].
1A function defined over its entire definition domain.
2The Common Lisp standard requires that no invocation of subtypep involving only
primitive types return (nil nil).
3C.f. bug #1533685 in Sbcl bug tracker.

12 ELS 2019

Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

(deftype except (x)
`(not (eql ,x)))

Listing 2: The deftype construct

A subtlety about type specifiers is that different ones can rep-
resent the same type (e.g., integer, (integer * *) and (or fixnum

bignum) all describe the same type). This means that symbolic com-
putation does not suffice to answer the sub-typing question. Note
that one could write a predicate, say type=, to determine whether
two type specifiers in fact describe the same type using two calls
of subtypep.

It is possible to define parametric aliases using the deftype con-
struct. It is then possible to refer to a whole type specifier using its
alias. Listing 2 shows an example of parametric deftype.

2.2 Vocabulary
type A set of elements. For any typeu:u ≡ {x | x :u}
canonical t.s. A type specifier without aliases.
primitive type A standardized type ([2]) that is not necessarily

implemented as a class.
symbolic form A type specifier whose type is symbol.
compound form A type specifier whose type is list.
logical form A compound form whose car is or, and or not.
kingdom In Baker’s terminology, a “type kingdom” des-

ignates the types that can be described using
only one kind of type specifier. nil (the empty
type) belongs to every type kingdom.

In this article we focus on two particular type kingdoms:
• the literal type kingdom, represented using only symbolic,

member and logical type specifiers, and,
• the range type kingdom, represented only using range and

logical type specifiers
For example, (or string symbol) belongs to the literal type king-

dom. (and number (not real)) belongs to the range type kingdom.
However, (or symbol integer) belongs to the literal type kingdom
while (or symbol (integer * *)) belongs to both. This situation is
handled in section 4.

There are other type kingdoms that Baker mentions in his arti-
cle, such as the array type kingdom, represented using only array

and logical type specifiers. Note that a type can belong to several
kingdoms, as multiple type specifiers can describe it. For example,
integer belongs to literal and range kingdoms as the type specifiers
integer (symbolic) and (integer * *) (range) both describe it. In
Section 4, we describe how to guarantee that a given type is only
described by one kind of type specifier, hence restricting it to one
kingdom.

3 PROCEDURE’S MECHANISMS OVERVIEW
Figure 1 shows the internals of our implementation. Every step will
be detailed in the following sections. There are three major stages:

(1) The pre-processing — Both type specifiers are processed in or-
der to simplify further calculations: the aliases are expanded,
and each occurrence of numeric types are converted to their

equivalent range type specifier. Finally, as explained there-
after, the procedure splits into several sub-procedures, one
for each type kingdom, because their internal type represen-
tation differ. In order to achieve that, the type specifiers must
also be split into equivalent subtype specifiers restricted to
each concerned kingdom. This stage is detailed in Section 4.

(2) Expert sub-procedures — Once split, each subtype specifier
is redirected to the appropriate expert sub-procedure. The
job of such a procedure is to prove, in its own kingdom, the
assertion “A is a subtype of B” to be wrong. Our procedures
currently only support literal and range type specifiers—an
expert sub-procedure has been implemented only for these
two kingdoms. This stage is detailed in Section 5.

(3) Result conjunction — Eventually, all expert sub-procedures
return (a Boolean) and the results are accumulated using
conjunction. (In practice, as soon as one expert procedure
returns false, subtypep returns.)

4 PRE-PROCESSING
4.1 Alias expansion
The very first step is to ensure that the type specifier is in its
canonical form, that is, having all its aliases expanded. This is done
by the expand function. For example, considering the type created
in Listing 2, (expand ’(except 12)) should return (not (eql 12)).

Unlike macro expansion, deftype expansion is not standardized
in Common Lisp. Thus a solution must be found for each Common
Lisp implementation independently. As our efforts are currently
focused on Sbcl, we discuss how we implement the expand function
for that compiler.

Sbcl’s subtypep heavily relies on the function
sb-kernel:specifier-type, which does type expansion. It
also does type simplification—turning (and integer string)

into nil—which could have saved us some work. We hoped we
could simplify that function to make it compatible with Baker’s
algorithm while keeping the deftype expansion and the range
canonicalization work. However we found, thanks to [7] tools,
that the function is responsible for most of the work of subtypep,
as shown in Figure 2 Considering the lack of efficiency of that
function and the fact that it would not be trivial to simplify it
to only keep the interesting bits, we decided on another, more
cost-effective solution.

The function sb-ext:typexpand takes a type specifier and tries to
expand it (not recursively). It either returns the expansion result, or
the input type specifier if it is not expandable. (sb-ext:typexpand
’integer) returns integer since it is not a deftype alias whereas
(sb-ext:typexpand ’(except 12)) returns (not (eql 12)). To ex-
pand a whole type specifier, it just needs to walk through it, apply-
ing sb-ext:typexpand on each list or atom manually. One subtlety
though is that the result of an expansion may itself be an alias to
expand4. For example, let’s say that we have (deftype my-type ()

’(except 0.0)), then the result of (sb-ext:typexpand ’my-type) is
(except 0.0), which is of course an alias to expand again.

4Fortunately, sb-ext:typexpand also returns a Boolean indicating whether or not an
expansion happened.

ELS 2019 13

ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

numeric types→ ranges numeric types→ ranges

alias expansion alias expansion

split split

type A type B

(and l-t-1 (not l-t-2))

missing types registration

bit-vector computation

= [0, 0, · · · , 0]?

(and r-t-1 (not r-t-2))

type diversity reduction

canonicalization

= ∅?

∧

subtypep result

literal-type-1 literal-type-2

range-type-1 ra
ng
e-
ty
pe
-2

Figure 1: Internal flowchart of (subtypep A B)

Figure 2: specifier-type weight in cl:subtypep executiona
a cached-subtypep-caching-call is just a memoizing wrapper around Sbcl’s subtypep

which is a bit more efficient than the raw implementation.

4.2 Numeric type specifiers conversion
As explained in Section 3, after pre-processing both type specifiers,
the procedure splits in two expert sub-procedures: one for literal
type specifiers and one for range type specifiers. Numeric types—
types containing numbers (mathematically speaking)—can have
different representations: a symbol (e.g., fixnum), a member expression
(e.g., (member 1 2 3)) or a range (e.g., (integer 1 6)). However,
the first two belong to the literal type kingdom whereas the latter
belongs to the range kingdom. Thus, the numerical type information
would be distributed over the different expert sub-procedures. For
consistency and accuracy, a single internal representation has to
be chosen. The symbolic and member numeric types must each be
converted into an equivalent type specifier, in which numerical
data are only represented using ranges.
• Symbolic numeric type specifier — say U, replace it by (U *

*)5. Note the new “type specifier” is likely not to be valid
(e.g., (fixnum * *) is invalid). Because it is never exposed to
the user—as it is an intermediate, internal representation—
nothing bad can happen. However, it cannot be used with
other functions requiring a type specifier, such as typep.
• member type specifiers — e.g., (member a 1 2 :b) is converted

to (or (member a :b) (bit 1 1) (integer 2 2)). To do that,
(1) extract the numbers out of the expression,
(2) map each number, say n, to construct the type specifier

((type-of n) n n)6,
(3) and combine the remaining member expression and the

ranges with the or logical type specifier.
A subtlety to consider is that super-types of number also con-

tain numerical data that must be extracted. Indeed, the type atom

contains both numerical data—(number * *)—and non-numerical
data—(and atom (not (number * *))). Thus, its replacement in
the numeric type kingdom is straightforward: (number * *). In the
literal type kingdom however, its replacement is (or stream array

character function standard-object symbol structure-object

structure-class). The type t—which is (or atom sequence)—must
be converted similarily.

Yet another subtlety is that the type specifiers (and) and (or)

respectively describe the types t and nil. Hence every occurrence
of (and) must be replaced by the replacement of t described in the
previous paragraph. In order to remove that annoying corner case
completely, (or) is also replaced, by nil.

4.3 Splitting
Having reached this step, the input now only contains canonical
literal and range type specifiers, numeric types being only expressed
as ranges. The next stage—expert sub-procedures—requires literal
and numeric types to be separated.

Thus the top type t is divided into two7 disjoint subtypes—
“kingdoms” as Baker says. The previous step, described in Sec-
tion 4.2, ensures that the representation (in terms of type specifiers)
of the types in each kingdom is different. All numeric types are
5Implementations supporting the IEEE floating point raise many concerns with -0.0,
NaN , +∞ and −∞. Baker explains in detail how to handle these cases.
6The results of type-of are implementation-dependent. We suppose here that type-of
only returns the name (as a symbol) of the type of n (n being a number).
7One per kingdom actually, but since our implementation only supports two—literal
and range types—we only focus our attention on these.

14 ELS 2019

Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

represented as ranges, and literal types as symbolic and member

(without numbers) type specifiers.
This step roughly consists of an in-depth traversal of the type

specifier, using pattern-matching to recognize which type specifier
represents which type. We use the implementation of [9] because
of its simplicity and versatility.

Our implementation uses a function type-keep-if which takes a
predicate P and a type specifier U and returns:
• U as it is when P(U) = ⊤,
• nil when P(U) = ⊥,
• (op U1 · · · Un) where Ui = (type-keep-if P Ui) when
U = (op U1 · · · Un) and op ∈ {and, or, not}.

Given the predicate literal-type-p and a type U , type-keep-if
returns U with every inner type specifier that describes a non-
literal type replaced by nil (interpreted as the empty type). The
result is then a subtype of (and (not number) (not (array * *))).
Likewise, given the predicate range-type-p, this function returns
U with every non-range inner type specifier replaced by nil (inter-
preted this time as the empty range). Thus, the result is a subtype
of number. Therefore, split can easily be implemented in terms of
type-keep-if.

4.4 Type reformulation
For any types U and V , U ⊆ V ⇔ U ∩V = ∅. Therefore, for any
type specifiers U and V, when (subtypep U V) returns T T, then
(subtypep ‘(and ,U (not ,V)) nil) also returns T T.

The results of the split function are zipped together using
(lambda (x y) ‘(and ,x (not ,y))) before being passed to the
expert sub-procedures. This way, they will not have to prove that
an arbitrary type is a subtype of another arbitrary subtype, but
rather whether one arbitrary type specifier describes the empty
type (which is substantially easier to reason about, and implement).

5 EXPERT SUB-PROCEDURES
Listing 3 shows how subtypep could be defined from a top-
down point of view. It shows that, according to Figure 1, both
type specifiers are processed independently, split into two king-
doms (literal and numeric types) and unified in an (and U (not

V)) fashion. The expert sub-procedures, null-literal-type-p and
null-numeric-type-p, each accept one argument—a type specifier,
say U—and returns a Boolean indicating whether U describes the
empty type (nil).

Each sub-procedure answers restricted to its kingdom—as no
type can (at this point of the procedure) belong to two different
kingdoms, as shown in section 4. With that piece of information,
we can (now) safely assert that:
• the literal type kingdom is the type described by (and (not

number) (not (array * *)))8, and,
• the numeric type kingdom is the type described by number9.

8Actually this is not completely accurate since the type string can be described using
array type specifiers. However, since the latter are not supported by our implementation
yet, we consider the types string and bit-vector as being literal types since their
symbolic representation is kept through the entire process. This is very likely to
change in the future.
9Our implementation does not support complex numbers yet, and considers the complex

type as being empty. Some wrong results arise from that supposition—such as (subtypep

(defun subtypep (a b)
(reduce (lambda (x y) (and x y))

(mapcar (lambda (expert t1 t2)
(funcall expert `(and ,t1 (not ,t2))))

(list #'null-literal-type-p
#'null-numeric-type-p)

(split (num-types->ranges (expand a)))
(split (num-types->ranges (expand b))))))

Listing 3: A top-down approach of subtypep

There are several properties that are derived from the preceding
pre-processing steps. First of all, both kingdoms’ procedures are
guaranteed to only ever receive argument canonical type specifiers.
These are also guaranteed to never contain atom or t type specifiers.
The occurrences of (and) and (or) have been replaced respectively
by t and nil. eql type specifiers have been replaced by equivalent
member expressions. member type specifiers only occur in the literal
type kingdom and contain no numerical data. Numerical data are
only expressed as intervals, which are likely not to be valid type
specifiers. Both kingdoms accept the type specifier nil but with a
different meaning: for literal types, nil means the empty type which
complement is t whereas for numeric types it represent the empty
range whose complement is (number * *).

In the following sections we describe in detail the implementa-
tion of the expert sub-procedures for the literal (Section 5.1) and
numeric (Section 5.2) type kingdoms. We also briefly discuss in Sec-
tion 5.3 the array type kingdom and the cons type specifier family,
which Baker ignores in his article.

5.1 Procedure for literal types
5.1.1 Theory. To represent types in the literal types kingdom, we
suppose at first that there is a way to enumerate every element in
t, say e1, e2, . . . , eω . Then, let u1,u2, . . . ,uω be all the (non-strict)
subtypes of the top-level type t. We associate to each pair

(
ui , ej

)
the bit bi j with the value 1 when ej ∈ ui and 0 when ej < ui . Let
bvi be the representative bit-vector associated to the typeui , defined
by [bi0,bi1, . . . ,biω]. These bit-vectors are the rows of the infinite
matrix on Eq. Bωω which illustrates the system.

©«

e1 e2 e3 e4 · · · eω

u1 1 0 0 0 · · · 1
u2 0 1 1 0 · · · 0
u3 0 0 0 1 · · · 0
...

...
...
...
...
. . .

...

uω 1 0 1 0 · · · 0

ª®®®®®®¬
(Bωω)

Proof. Each type has a unique bit-vector representation.
Let ui and uj be two distinct types. Thus, (ui ∪uj)\(ui ∩uj) , ∅.

Let ek ∈ (ui ∪uj)\(ui ∩uj). By definition, we have bik , bjk . Hence
bvi , bvj . Two distinct types are represented by two different bit-
vectors.

Similarly, let bvi and bvj be two different bit-vectors. Then
it necessarily exists a k such as bik , bjk . Therefore
∃ek ,

(
ek < ui ∨ ek < uj

) ∧ ek < ui ∩ uj . Hence ui , uj . □

’number ’real) returning true. This will change as soon as complex numbers are
supported.

ELS 2019 15

ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

Proof. Type intersection, union and complement are equivalent to bitwise
Boolean operations “and”, “or” and “not” on representative bit-vectors.

Let two types ui and uj in:
(1) Let uk = ui ∪ uj . By definition, ∀l ∈ N ∪ {ω},bkl = 1 iff

bil = 1 or bjl = 1, that is bkl = bil ∨ bjl . Thus, also by
definition:

bvk = [bk0,bk1, . . . ,bkω]
=

[
bi0 ∨ bj0,bi1 ∨ bj1, . . . ,biω ∨ bjω

]
= bvi ∨ bvj

(2) We proceed similarly for the intersection and the Boolean
logical operator “and” (∧).

(3) Let uk = ui . We have by definition ∀l ∈ N∪ {ω},bkl = ¬bil .
Then:

bvk = [¬bi0,¬bi1, . . . ,¬biω]
= ¬bvi □

5.1.2 Implementation. Common Lisp cannot enumerate all the
possible subtypes of t nor all of its elements. Fortunately, we do
not need them all. We only need to consider the types mentioned
in the input type specifier to determine its emptiness.

We also do not need to enumerate all the elements of these types. It
is that aspect of the procedure of Baker that makes it both powerful
and difficult to understand at first. We only need sufficiently many
elements from a type to distinguish it from the other types. Because
we are now considering only a finite number of types, sayu1, . . . ,un ,
to register a new typeun+1 to our (now finite) matrix, we only need
to find an element e ∈ un+1 such as e < u1 ∪ · · · ∪ un .

Now let’s suppose that the type specifier ofun+1 is in fact (member
e), that e is itself chosen as a representative element for another
type, say uk , and that uk is only distinguished from the other reg-
istered types by that element e . un+1 and uk would then have the
same bit-vector representation when these types are likely to be
distinct. The general solution for that kind of problem is to regis-
ter all the elements found inside the member type specifier. When
there is a conflicting element e already registered as a representa-
tive for another types, we generate additional representatives for
these types. That precaution ensures that this kind of conflict never
happens and greatly simplifies the implementation of member type
specifiers.

To implement that registration matrix system, we use two
functions: B : type name 7−→ bit-vector, with B(ui) = bvi , and
I : representative 7−→ bit index, with I (ei) = i − 1. Baker suggests
in his small example [3] using the operator set which is depre-
cated in modern Common Lisp programming. Instead, we use hash
tables to represent these functions. Type names are symbols, bit-
vectors are bit-vectors and element indexes are positive integers.
To register a new type un+1, it is added to the B hash table and
its bit-vector content b(n+1)i is evaluated for all the existing repre-
sentatives (i ∈ J1;mK). To register a new representative em+1, it is
added to the I hash table with the index m. Then we add one bit
(them-th bit) to each bit-vector bvi and evaluate it in respect to the
type ui . Thus, to retrieve the bit-vector of a registered primitive or
user-defined type t , we just lookup its value B(t). To compute the
bit-vector of a member expression (member e1 · · · en), we use the

value B((member e1 · · · en)) = ∨n
i=1 β (I (ei)), where β(x) returns

the null bit-vector with the x-th bit activated.
The bit-vector of logical type specifiers are given in Eq. 1, Eq. 2

and Eq. 3 thereafter.

B ((and U1 · · · Un)) =
n∧
i=1

B(Ui) (1)

B ((or U1 · · · Un)) =
n∨
i=1

B(Ui) (2)

B ((not U)) = ¬B(U) (3)

5.1.3 Issues. The method for choosing the representative elements
for a type depends of its nature: it can be a primitive type, a user-
defined type (class, structure or condition) or a member expression.

Since primitive types are known (c.f. table 4.2 of [2]), their repre-
sentative elements are chosen at compile-time. The un+1 subtlety
above should still be kept in mind. For instance, the type null is a
subtype of both symbol and list ; so three representative elements
are needed: nil, a non-empty list and a symbol other than nil. Note
that some primitive types are an exhaustive partition of other types
(e.g., character ≡ (or base-char extended-char)). Obviously, in
that case, such a precaution does not apply.

For user-defined types, Baker suggests to extend the type cre-
ation mechanism—thus modifying the implementation’s internal
functions—to register a dummy element as a representative. We
decided not to follow his approach because of the poor portability
of his solution. Indeed, this work, often non-trivial, would have
to be repeated for each targeted Common Lisp implementation.
(We would like to avoid modifying the Sbcl internal mechanisms.)
Moreover, it would register a representative for every class created,
thus increasing bit-vectors’ size uselessly since only a few of these
classes are likely to appear in a subtypep type specifier. But more
importantly, the main drawback of his solution is that creating that
dummy element might have unexpected side-effects, as it may need
to use slot’s default values and/or initialize-instance. We decided
instead to use the Meta Object Protocol (Mop) [6], more specifically
class prototypes. Class prototypes are pseudo-instances of a class,
created without executing initialize-instance and which typep

and eql view as traditional instances. However, to create a class
prototype, the class needs to be finalized and it cannot be guaran-
teed until it is instantiated. Since that class may be involved in a
subtypep call before that happens, when a new class is encountered,
we force its finalization using the function ensure-finalized from
the (portable) closer-mop package10. Then, we create the proto-
type of the class using sb-mop:class-prototype and register it. This
method is much more portable than Baker’s and does not require
to hook inside the implementation.

Since (in Sbcl11) conditions are classes, they are supported au-
tomatically. The Common Lisp standard [1] states that “defstruct
without a :type option defines a class with the structure name as
its name”, hence in that case no additional work is required. The
standard also states that “Specifying this option [...] prevents the

10http://common-lisp.net/project/closer/
11Every major lisp implementations implement conditions as Clos classes—the most
obvious way to do it. We ignore exotic condition implementations.

16 ELS 2019

Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

structure name from becoming a valid type specifier recognizable by
typep.” Thus, subtypep is not concerned by these types of structures.

To address the misrepresentation problem when member type
specifiers are involved, as discussed in Section 5.1.3, we must ensure
that a new representative element is generated and registered. The
Common Lisp standard ([1]) states that the member type specifier
is defined in terms of eql. That is, (typep e ’(member e1 · · · en))
uses eql to compare e to the successive ek to check the membership.
That precise property reduces the misrepresentation problem to
only two types: symbol and character (and their subtypes).

To better understand why it is the case, first consider a reduced
version of the top-level type t: t = (or string list symbol). Then,
let R = ("hello" (1 2 3) foo) be our list of representatives.

(1) Let’s ask the question (subtypep ’symbol ’(member foo)).
(2) As discussed in Section 5.1.3, we add the elements of the

member expression to R. To conform with the specification,
we first check whether or not foo is already in R eql-wise:
foo ∈eql R, so R does not change.

(3) As shown in Eq. 4, the emptiness check passes, meaning
that symbol is indeed a subtype of (member foo), which is
obviously wrong.

B(symbol) ∧ ¬B((member foo)) = 001 ∧ ¬001 (4)
= 001 ∧ 110
= 000
= B(nil)

However, for lists, that problem does not appear, thanks to the
eql-wise comparison.

(1) (subtypep ’list ’(member (1 2 3)))

(2) (1 2 3) <eql R ⇒ R = ("hello" (1 2 3) foo (1 2 3))

(3) As shown in Eq. 5, the emptiness check fails and the answer
is correct.

B(list) ∧ ¬B((member (1 2 3))) = 0101 ∧ ¬0001 (5)
= 0101 ∧ 1110
= 0100
, B(nil)

Within the literal types kingdom, the only types for which this
problem occurs—since the representatives are not supposed to be
accessible to the user of subtypep—are then symbol and character.
Therefore, only the representatives of these types need to be actually
checked when registering member’s elements.

To generate a new symbol, we use alexandria:symbolicate12.
The keyword subtype of symbol is also subject to the problem. (Ac-
tually, solving the problem for keywords also solves the problem
for symbols.) To generate a new character, we first need to know
whether it is a base-char or an extended-char. Then we pick a char-
acter of that type not registered yet. When all the characters of that
type are registered there is nothing to do (since the type is fully
represented in the matrix, no misinterpretation can occur).

We have not addressed the problem of a type specifier involving a
user classC and a member expression containing the class prototype
of C yet.

12https://common-lisp.net/project/alexandria/

5.2 Procedure for numeric types
Unlike the literal type kingdom, the range type kingdom does not
need an internal state to represent numeric types. Indeed, the expert
sub-procedure takes as input an already precise enough representa-
tion of the type described. Range type specifiers allow to describe
which kind of number is specified (its type, e.g., integer, ratio,
etc.), its bounds (inclusive and exclusive, e.g., (integer (0) 6)) and
is able to represent non-bounded intervals through the symbol *
meaning infinity (e.g., (float * 0.0) ≡ [−∞; 0.0]). The range type
specifier is as precise as the mathematical range notation. Addition-
ally, the mathematical union, the intersection and complement of
these ranges can be expressed equally using the corresponding
logical type specifier.

Therefore, to assert about the emptiness of the input type spec-
ifier, checking whether the canonicalized version of this interval
expression describes the empty range (i.e., nil) is sufficient. The cal-
culation is performed by three successive steps, which we describe
in the following sections.

This algorithm suffers from an exponential time and space com-
plexity. However, Baker claims that in practice, that theoretical
complexity is not an issue (it only appears for “highly artifical
cases”). We have not tried to prove (or invalidate) his statement but
Section 6 shows some early results that tend to support his claim.

We use a custom abstraction, the interval class, closer to the
mathematical object (with type, bounds and limits slots). Thus
we avoid the annoying manipulation of lists (with the many
standardized ranges syntaxes). The first step is to write a func-
tion range->interval that converts (using pattern matching) a
range type specifier to its corresponding interval instance. This
function also takes care of the exotic compound forms—such as
(unsigned-byte s) which describes the integer range [0; 2s − 1].
We also use a similar structure for interval operations to fully dis-
card the list representation.

We also need the following interval functions:

• (interval-and I1 I2) — returns I1 ∩ I2 if their types are eql,
or ∅ otherwise.
• (interval-or I1 I2) — returns I1 ∪ I2 if their types are eql

and I1 ∩ I2 , ∅, or ∅ otherwise.
• (interval-minus I1 I2) — returns I1 − I2 (may return two

values when I2 ⊂ I1) if their types are eql, or I1 otherwise.
• (interval-empty-p I) — returns whether I = ∅.

5.2.1 Type diversity reduction. Functions working with intervals
must be aware of the relationship of the types of these inter-
vals. For example, the intersection of two integer intervals might
be non-empty whereas the intersection of one integer and one
single-float intervals is always null as these two types are disjoint.
However, integer and fixnum are different types but the intersec-
tion of intervals of such types might be non-empty. The subtype
relationship of the types of intervals needs to be introspected to
accurately apply some operations (such as intersection or union).

The type number (complex numbers being ignored) is an ex-
haustive partition of six mutually disjoint types: integer, ratio,
single-float, short-float, double-float, and long-float. Baker ad-
vises to define what he calls “simple intervals”, that is intervals
guaranteed to have their type equal to one of these six types. This

ELS 2019 17

ELS’19, April 01–02 2019, Genova, Italy Léo Valais, Jim E. Newton, and Didier Verna

Supertype Conversion
number (or rational float)

real (or rational float)

rational (or integer ratio)

float (or short-float single-float double-float long-float)

bignum (or integer (not fixnum))

Table 1: Conversion table for supertypes

way, as these types are mutually disjoint, operations on intervals
of such types have their implementation greatly simplified.

To convert each numeric type into its equivalent using only the
six types above, a two-step conversion is required.

(1) For intervals whose type is a supertype of one of these
types, the conversion table 1 is used. E.g.: the conversion of
(rational a b) gives (or (integer a b) (ratio a b)).

(2) For intervals whose type is a bounded subtype (i.e.: having
defined bounds, not infinity) of these six types, their actual
bounds have to be constrained to fit within the bounds of
their type, before being converted to their corresponding su-
pertype. For example, (fixnum 12 2100), has to be converted
to (integer most-negative-fixnum most-positive-fixnum),
where most-positive-fixnum < 2100, as 2100 is a bignum,
thus discarding the numbers in between. A similar proce-
dure is applied to the types bit, short-float, single-float,
double-float and long-float.

Eventually, the type of every interval is constrained to one of
the six types above, with the bounds (if some) of their original type
preserved.

5.2.2 Canonicalization. To check the emptiness of the interval ex-
pression, it is canonicalized. Let Γ be the canonicalization function.
Its parameter is either an interval I or an operation on intervals χ
(intersection, union or complement). Γ either returns ∅, an interval

or a union of disjoint intervals—the three possible outcomes of a
mathematical interval canonicalization.

First and foremost, anytime Γ encounters or returns a union,
it must ensure that it is flattened (no nested unions). It must also
ensure that the intervals inside the union are disjoint. As shown in
Section 5.2.1, intervals with different types are necessarily disjoint.
Touching intervals [3] are merged using interval-or.

Γ(∅) and Γ(I) are straightforward, as shown in Eq. end-∅ and
Eq. end-I . These are the terminal cases of the recursion of Γ.

Γ(∅) = ∅ (end-∅)
Γ(I) = I (end-I)

Intersections (and logical type specifiers) are reduced as soon as
they are encountered. Their operands need to be processed by Γ
first (hence the implicit mapping “k → n”). Eq. and-apply shows
how to reduce intersections. The Φf operator denotes a fold [5]
operation using the function f . Γ ◦ ∩ denotes the composition of
the Γ function and the intersection operator. To break it down in a
bottom-up fashion:

(1) Eq. and-final — the application of the intersection function.

(2) Eq. and-distribution′ — the distribution of the intersection
over the union. Next step is Eq. and-final.

(3) Eq. and-distribution — also the distribution of the intersection
over the union. However, Γ(χ) may return an union, leading
the execution either to Eq. and-distribution′ or directly to
Eq. and-final.

(4) Eq. and-apply — the canonicalization of the χn forms us-
ing mapping. The results are then folded using Γ ◦ ∩, thus
initiating the recursive intersection distribution.

Γ

(⋂
n

χn

)
= ΦΓ◦∩ Γ(χk)k→n (and-apply)

Γ

(
χ ∩

⋃
n

In

)
=

⋃
n

Γ (Γ(χ) ∩ In) (and-distribution)

Γ

(⋃
n

In ∩ I
)
=

⋃
n

Γ(In ∩ I) (and-distribution′)

Γ(I1 ∩ I2) = (interval-and I1 I2) (and-final)

Complements (not logical type specifiers) are also reduced as
soon as they are encountered. Their only operand is first canon-
icalized. Complementing U in number (the top-level type of the
range type kingdom) is equivalent to the difference number − U ,
as shown in Eq. not-apply. The difference canonicalization goes
through a similar recursive distribution path than the intersection,
that is Eq. minus-distribution and then Eq. minus-apply. Note that
this path is taken every time since the interval difference is an
internal operation and that its left-hand operand is alwaysU.

Γ (χ) = Γ (U − Γ(χ)) (not-apply)
U = ⟨type diversity reduction of (number * *)⟩

Γ

(
χ −

⋃
n

In

)
=

⋃
n

Γ(χ − In) (minus-distribution)

Γ

(⋃
n

In − I
)
=

⋃
n

(interval-minus In I) (minus-apply)

5.2.3 Range emptiness check. Once an interval expression
canonicalized, checking its emptiness is trivial. The predicate
interval-empty-p, given the result of the first Γ call, just returns
the Boolean that null-numeric-type-p has to return.

5.3 Array types and cons type specifiers
This section presents some preliminary work and research results
found on array and cons type specifiers. Obviously, since the im-
plementation of the expert sub-procedures for these kingdoms is
still a work in progress, no result nor implementation guidelines
are provided here. It does, however, give some insights about how
Baker procedure applies to modern Common Lisp implementations
such as Sbcl.

Array type specifiers are complex to handle because they are
bi-dimensional: it has an element type and bounds (e.g., (array
integer (* 2 *))). Internally, Common Lisp implementations do
not store which exact type specifier is specified but rather only store

18 ELS 2019

Implementing Baker’s SUBTYPEP decision procedure ELS’19, April 01–02 2019, Genova, Italy

101 102 103

10−4

10−3

10−2

10−1

100

Subtypes of NUMBER

101 102

10−4

10−3

10−2

10−1

100

MEMBER types

101 102 103 104

10−4

10−3

10−2

10−1

100

Subtypes of T

100 101 102 103

10−4

10−3

10−2

10−1

100

Subtypes of CONDITION

Algorithm 1 with cl:subtypep

Algorithm 1 with baker:subtypep

Algorithm 2 with cl:subtypep

Algorithm 2 with baker:subtypep

Figure 3: Comparative efficiency measures of our subtypep

implementation

the result of the function upgraded-array-element-type returns giv-
ing that type. E.g, for (make-array 2 :element-type ’list), the
implementation does not makes an array of list but rather an ar-
ray of (upgraded-array-element-type ’list). For every value that
might return this function, Baker requires that we store a bit matrix
(instead of bit vectors) because of the complex bounds logic of the
type specifier. As for the literal type procedure, it seems to be an
efficient type representation system—albeit more complex—which
nonetheless requires an extra registration step and a global state.

Baker does not mention the cons type specifier family at all
in his article because it appeared after he released his article [4].
An accurate expert sub-procedure for this kingdom would have
an exponential complexity. More investigation is needed to assert
whether or not that exponential time is “acceptable” (as it is for
ranges) before rejecting it. The accuracy of existing subtypep pro-
cedures for the cons type specifier also needs to be studied.

6 EARLY RESULTS
Our implementation of subtypep is still in active development and
very experimental. No serious optimization work has been made.
Nonetheless, Newton has compared in [7] the performances of
several subtypep highly dependent algorithms, both using the im-
plementation of Sbcl and ours.

These results, shown in Figure 3, are only presented here as
complementary information. On the horizontal axis is the size of
the type specifiers and on the vertical axis is the measured exe-
cution time. Hence, the lower a curve is, the better. As expected,
our implementation is often slower, but not dramatically, which is
encouraging.

• Our implementation is overall slower in the range type king-
dom.
• Heavy users of member seems to experience a slower execu-

tion. Perhaps, as predicted by Baker, the reason is that the
systematic registration of the elements makes the size of
the bit-vectors grow quickly, thus making every subsequent
operation slower.
• For the symbolic type specifiers—primitive types, Clos

classes and conditions—our implementation already outper-
forms Sbcl’s.

7 CONCLUSION AND FUTURE WORK
Throughout this article we presented our implementation of Baker’s
decision procedure. In Section 2 we introduced the Common Lisp
type system, the notion of type specifier and some vocabulary. In
Section 4 we explained how to pre-process the caller’s type speci-
fiers to make the work of the expert sub-procedures presented in
Section 5 easier. We described our implementation for the symbolic,
member, range and logical type specifiers. We also gave some insights
about the implementation for the array and cons type specifiers.
We finally presented some early efficiency measures, which are
globally encouraging.

Our implementation is still a work in progress and highly exper-
imental. But with some cleaning and the implementation of both
array and cons expert sub-procedures, it could be a viable alter-
native to existing subtypep implementations. We will have open
sourced its code by then. We still have to find a solution for the
satisfies type specifier and the related uncertainty. Indeed, in some
situations, subtypep still can answer even though the type speci-
fier is involved. For example, in (subtypep ’string ’(and number

(satisfies evenp))), as the second operand is guaranteed to be
a subtype of number, the predicate can safely return false. Finally,
a lot of measures on accuracy and efficiency are needed to assert
whether Baker’s intuition about his procedure was correct or not.

Even if, in the future, we are to conclude that our implementation
is less efficient than those which already exists, Baker’s algorithm
would still likely to improve the predicate’s accuracy. Lispers would
then have the ability to choose whichever subtypep implementation
fits their needs the best.

REFERENCES
[1] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[2] Ansi. American National Standard: Programming Language – Common Lisp –

Type Specifiers (Section 4.2.3). ANSI X3.226:1994 (R1999), 1994. http://www.
lispworks.com/documentation/lw50/CLHS/Body/04_bc.htm.

[3] Henry G. Baker. A Decision Procedure for Common Lisp’s SUBTYPEP Predicate.
Lisp and Symbolic Computation, 1992.

[4] Paul F. Dietz. “subtypep tests” discussion on gcl-devel, 2005. https://lists.gnu.org/
archive/html/gcl-devel/2005-07/msg00038.html.

[5] Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, 9(4):355–372, July 1999. URL http://dblp.uni-trier.de/
db/journals/jfp/jfp9.html#Hutton99.

[6] Gregor J. Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

[7] Jim Newton. Representing and Computing with Types in Dynamically Typed Lan-
guages. PhD thesis, Sorbonne Université, Paris, France, November 2018.

[8] Jim Newton and Didier Verna. Approaches in typecase optimization. In European
Lisp Symposium, Marbella, Spain, April 2018.

[9] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, 1992.

ELS 2019 19

make-method-lambda revisited
Irène Durand

Robert Strandh
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT
The Common Lisp metaobject protocol specifies a generic function
named make-method-lambda to be called at macro-expansion time
of the macro defmethod. In an article by Costanza and Herzeel, a
number of problems with this generic function are discussed, and a
solution is proposed.

In this paper, we show that the alleged problems are due to the
fact that existing implementations do not include proper compile-
time processing of the associated macro defgeneric, and that with
proper compile-time processing, the problems indicated in the paper
by Costanza and Herzeel simply vanish.

The main characteristic of our proposed solution is for the
compile-time side effects of defgeneric to include saving the name
of the method class given as an option to that macro call. With this
additional information, no difference exists between the behavior of
direct evaluation and that of file compilation of a defgeneric form
and a defmethod form mentioning the same name of the generic
function.

CCS CONCEPTS
• Software and its engineering → Abstraction, modeling and
modularity; Software performance; Compilers;

KEYWORDS
Common Lisp, Meta-Object Protocol
ACM Reference Format:
Irène Durand and Robert Strandh. 2019. make-method-lambda revisited. In
Proceedings of the 12th European Lisp Symposium (ELS’19). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.5281/zenodo.2634303

1 INTRODUCTION
In the definition of the Common Lisp [1] metaobject protocol in the
book by Kiczales et al [3] (also known as the AMOP), the generic
function make-method-lambda plays a role that is very different
from most of the other generic functions that are part of the metaob-
ject protocol.

According to the book, the function has four parameters, all
required:

(1) A generic function metaobject.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2634303

(2) A (possibly uninitialized) method metaobject.
(3) A lambda expression.
(4) An environment object.

The main difference between make-method-lambda and other
generic functions defined by the metaobject protocol is that make-
-method-lambda is called as part of the expansion code for the
defmethod macro, whereas other generic functions are called at
execution time.

The AMOP book states that the generic function passed as the
first argument may be different from the one that the method is ulti-
mately going to be added to. This possibility seems to exist to handle
the situation where a defgeneric form is followed by a defmethod
form in the same file. In this situation, the Common Lisp standard
clearly states that the file compiler does not create the generic func-
tion at compile time. Therefore, when the corresponding defmethod
form is expanded (and therefore make-method-lambda is called),
the generic function does not yet exist. It will be created only when
the compiled file is loaded into the Common Lisp system.

The AMOP book also states that the method object passed as
second argument may be uninitialized, suggesting that the class
prototype of the method class to be instantiated may be passed as
the second argument.

The third argument is a lambda expression corresponding to the
body of the defmethod form. The purpose of make-method-lambda
is to wrap this lambda expression in another lambda expression
called the method lambda which is ultimately compiled in order to
yield the method function.

The default method lambda returned by an invocation of make-
-method-lambda is a lambda expression with two parameters. The
first parameter is a list of all the arguments to the generic function.
The second parameter is a list of next methods that can be invoked
using call-next-method from the body of the method. There-
fore make-method-lambda also provides definitions of call-next-
-method and next-method-p that are lexically inside the lambda
expression it returns.

It is important that the method lambda is returned as part of the
expansion of the defmethod macro and that it is then processed in
the same environment as that of the defmethod form itself, so that
when the defmethod macro call is evaluated in an environment
that is not the null lexical environment, that environment is taken
into account when the method lambda is processed. For example,
code like this one:

(let ((x 10))
(defmethod foo ((y integer))

(+ x y)))

should work as expected.

20 ELS 2019

make-method-lambda revisited ELS’19, April 01–02 2019, Genova, Italy

Finally, the fourth argument to make-method-lambda is an en-
vironment object.

2 PREVIOUS WORK
In their article [2], Costanza and Herzeel give a simple example of
this simple defmethod form:
(defmethod foo ((x integer) (y integer))

(do-something x y))

and at the end of section 2.1, on page 3, they claim that the expansion
of that form is “something like” the follow form:
(let ((gf (ensure-generic-function 'foo)))
(multiple-value-bind

(lambda-expression extra-initargs)
(make-method-lambda
gf
(class-prototype
(generic-function-method-class gf))

'(lambda (x y) (do-something x y))
lexical-environment-of-defmethod-form)

(add-method
gf
(apply #'make-instance

(generic-function-method-class gf)
:qualifiers '()
:lambda-list '(x y)
:specializers (list (find-class 'integer)

(find-class 'integer))
:function (compile nil lambda-expression)
extra-initargs))

except that we have formatted the code to fit the page, and we have
added two missing closing parentheses at the end of the form.

This example is a slight variation on the code that is shown in
section 5.5.1 of the AMOP book. However, in that section, it is not
claimed that this code is the result of expanding a defmethod form.
Rather, it is given as “an example of creating a generic function and
a method metaobject, and then adding the method to the generic
function”.

Indeed, this expansion is not possible, at least not in a compiling
implementation, which is the premise of both the paper by Costanza
and Herzeel and this one. It has two fundamental problems:

(1) The call to make-method-lambda must be made at macro-
expansion time, whereas in their example, the call is present
in the expansion, so it will be made at load time.

(2) In their example, the resulting method lambda is compiled
in the null lexical environment. However, compiling in the
null lexical environment would violate the semantics of the
Common Lisp standard, which requires that the body of the
defmethod form be compiled in the lexical environment in
which it appears.

In section 5.4.3 of the AMOP book, an example of an expansion is
shown, and figure 5.4 clearly mentions that make-method-lambda
is called during the macro-expansion phase. Furthermore, in figure
5.3, which shows the expansion of the defmethod macro, no call to
compile is made. The result of calling make-method-lambda, i.e.,
the method lambda is simply present in the expanded code.

As Costanza and Herzeel point out, the defmethod macro does
not allow the programmer to specify a class for the method to be

created. That class must be determined by the generic function to
which the method is ultimately going to be added. Therefore, in
the case of a defgeneric form followed by a defmethod form, the
method class must be the one indicated in the defgeneric form.

The conundrum, then, is that the file compiler does not cre-
ate the generic function as a result of compiling the defgeneric
form, so when a defmethod form with the same name is encoun-
tered later in the same file, the method class can not be taken from
the generic function metaobject. Otherwise, the normal way of
obtaining the method class would be to call the accessor generic-
-function-method-class, passing it the generic function metaob-
ject with the name indicated in the defmethod form. If there is
no way for the file compiler to determine the method class when
the defmethod form is encountered, then clearly the only choice is
to call make-method-lambda with the class prototype of the class
named standard-method as the second argument. However, the
analysis by Costanza and Herzeel is that this behavior is a result
of the file compiler calling ensure-generic-function to obtain
a generic-function metaobject and then querying that object to
obtain the method class. A simple experiment shows that this is
not the case in SBCL for instance.

When the following code is compiled with the SBCL file compiler:

(defclass hello (standard-method) ())

(defgeneric foo (x y)
(:method-class hello))

(defmethod foo (x y)
(+ x y))

(eval-when (:compile-toplevel)
(print (fdefinition 'foo)))

the compilation fails when an attempt is made to find the definition
of foo in the last top-level form. Thus, after the defmethod form
has been compiled, the generic-function metaobject still does not
exist in the compilation environment.

However, tracing make-method-lambda prior to compiling the
code above in a fresh compilation environment reveals that make-
-method-lambda is indeed called as a result of compiling the def-
method form, and that the second argument passed to the call is an
instance of standard-method.

This situation can lead to some problems in client code that
are amply described in the paper by Costanza and Herzeel. The
essence of the problem is that, when a defgeneric form with a
non-standard :method-class option is followed by a defmethod
form in the same file, the file compiler may generate an expansion of
the defmethod form that creates an instance of standard-method
when the compiled file is ultimately loaded, as opposed to an in-
stance of the method class with the name that was explicitly men-
tioned in the defgeneric form.

Furthermore, this behavior is inconsistent with the behavior
when the source file is processed using load. The reason is that,
contrary to the file compiler, load completely processes and evalu-
ates each top-level form in order. As a result, when load is used, the
generic function metaobject is created as a result of evaluating the
defgeneric form, so that it does exist when the defmethod form is

ELS 2019 21

ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

ultimately evaluated. Clearly, such inconsistent behavior between
directly loading a source file and loading the result of applying the
file compiler to it first is highly undesirable.

Perhaps even worse, even when the file compiler is used consis-
tently, if the file is recompiled after having been loaded previously,
the existing generic-function metaobject is reinitialized to have the
correct method class, and the code works as when load is used.

The ultimate conclusion by Costanza and Herzeel is that, in
order for the behavior of the file compiler to be consistent with
that of loading the source file directly, and indeed for that behavior
to be correct, the file compiler must create the generic function
metaobject at compile time, so that it can be queried for the desired
method class when the defmethod form is encountered. In the next
section, we propose an alternative solution to this conundrum.

To solve the perceived problems with make-method-lambda,
Costanza and Herzeel first analyze what desirable features this
function has, and conclude that the following two are essential:

(1) It can add new lexical definitions inside method bodies.
This is the feature that is used to introduce definitions of
next-method-p and call-next-method.

(2) It can create lambda expressions for method functions with
parameters in addition to the usual two, namely one for
holding the arguments to the generic function and another
for holding a list of next methods.

With these essential features in mind, Costanza and Herzeel then
propose an alternative to make-method-lambda that does not have
the perceived problem that this function has.

Their proposed solution has two parts:
(1) They use custom method-defining macros. Such a macro

would expand to a defmethod form, but this form can con-
tain additional lexical definitions into the method body, in-
troduced by the custom macro.

(2) They propose that method functions always be able to take
additional parameters in the form of Common Lisp keyword
parameters. Furthermore, the use of the lambda-list key-
word &allow-other-keys would make it easier to combine
method functions that accept different additional arguments.

While it is able to solve the problem of the inconsistent behav-
ior between compile-file and load, this solution has two major
disadvantages as pointed out by Costanza and Herzeel:

(1) With this solution, method functions have a lambda list
that includes keyword parameters. Processing keyword ar-
guments imposes a significant performance penalty on the
invocation of method functions.

(2) Existing CLOS implementations that use a lambda list with-
out any keyword parameter for method functions are incom-
patible with this solution.

In the next section, we propose a solution that has neither of
these disadvantages.

3 OUR TECHNIQUE
As permitted by the Common Lisp standard, the defgeneric macro
may store information provided in the defgeneric form so as to
make better error reporting possible when subsequent forms are
compiled. In particular, the standard mentions storing information

about the lambda list given, so that subsequent calls to the generic
function can be checked for correct argument count. This infor-
mation is kept in an implementation-specific format that does not
contain the full generic-function metaobject, as this object is cre-
ated when the compiled code resulting from the file compilation is
loaded.

However, just as it is possible to keep information about the
lambda list at compile time, it is also possible to keep information
about the :method-class option given, or, when no option was
supplied, the fact that the method class is standard-method.

With this additional information, during the expansion of the
defmethod macro, the name of the method class can be retrieved,
then a class metaobject from the name, and finally a class prototype
from the class metaobject.

While the first parameter of make-method-lambda is indicated
by the AMOP book as a generic-function metaobject, it is not specif-
ically indicated that this object might be uninitialized, contrary to
the method object that must be passed as the second argument. It
is, however, indicated that the generic-function object passed as
the first argument may not be the generic-function object to which
the new method will eventually be added. Therefore, there is not
much information that make-method-lambda can make use of. The
exception would be the exact class of the generic function and the
exact method class. It would be awkward for a method on make-
-method-lambda to access this information explicitly, rather than
as specializers of its parameters. For that reason, the first argument
to make-method-lambda might as well be a class prototype, just as
the second argument might be.

As an example of how to accomplish this additional information,
we suggest a solution with two parts:

(1) The first part involves the possibility for the compiler to
store information about a generic function in the compilation
environment, as the result of compiling a defgeneric form.
Specifically, the name of the generic-function class and the
name of the method class would need to be stored, and later
retrieved.

(2) The second part requires a modification to the protocol used
by the compiler to query the compilation environment in
order to determine how a form is to be compiled.

For a solution to the first part, in Appendix A we show how
additional information about a generic function can be stored and
retrieved in the context of the protocol described in Strandh’s paper
on first-class global environments [5].

For the second part, recall that in section 8.5 of the second edition
of Guy Steele’s book on Common Lisp [4], the author describes a
protocol for this kind of environment query. This protocol contains
three functions for environment query, namely function-information,
variable-information and declaration-information.

Not only are these functions inadequate for all the information
that a compiler needs to determine about a function or a vari-
able, but they are also hard to extend in a backward-compatible
way. A modern version of this protocol would likely return stan-
dard objects as opposed to multiple values, thereby allowing for
backward-compatible extensions on a per-implementation basis.

For the second part of our solution, the environment function
function-information, when given the name that has previously

22 ELS 2019

make-method-lambda revisited ELS’19, April 01–02 2019, Genova, Italy

been encountered in a defgeneric form, would have to return
information about the name of the generic-function class and the
method class. With this additional information, the expander for
the macro defmethod would query the environment for this in-
formation, access the corresponding classes, and then the class
prototypes, and finally call make-method-lambda with those pro-
totypes as arguments.

While our solution is an improvement on the existing situation,
it is clearly not perfect. For one thing, both the generic-function
class and the method class mentioned in the defgeneric form
must exist when the defmethod form is encountered, so that the
class prototypes of these classes can be passed as arguments to
make-method-lambda.

Also, when a custom generic-function class is used, it is possible
that there exist custom methods on various generic functions for
initializing instances of this custom class, and these custom meth-
ods could conceivably intercept and alter the method class in the
generic-function metaobject thus created. In such a situation, our
technique would then use incorrect information about the method
class, and pass the wrong class prototype as the second argument
to make-method-lambda.

4 CONCLUSIONS AND FUTURE WORK
We have defined a technique that alleviates a problem encountered
in current Common Lisp implementations when a defgeneric
form is followed by a defmethod form in the same compilation
unit. When the defgeneric form mentions a method class other
than standard-method, and the compilation unit is processed in
a fresh compilation environment, current implementations do not
propagate the information about the method class to the macro
expander for defmethod, resulting in make-method-lambda being
called with a method argument of the wrong class.

Our solution requires the compiler of the Common Lisp im-
plementation to store a small amount of additional information
about the generic-function class and the method class when the
defgeneric form is encountered, and requires the macro expander
for defmethod to retrieve this information by querying the compi-
lation environment.

Contrary to the proposal by Costanza and Herzeel, our suggested
solution does not introduce any incompatibilities that would ren-
der some existing code obsolete. Furthermore, our solution does
not have the potential performance problem of the proposal by
Costanza and Herzeel, i.e. the additional cost of processing key-
word arguments to method functions.

However, there are still some situations where our technique
does not work. In particular, when a custom generic-function class
is used, and the initialization of instances of this class intercepts
and alters the information about the method class as given in the
defgeneric form. For cases like this, we suggest that the author of
the custom generic function class also add a method on add-method,
specialized to the custom generic-function class so as to verify that
the class of the method being added is indeed correct, and signal
an error otherwise.

Future work includes adding the functions defined in Appendix A
to the SICL1 protocol for first-class global environments.

1See https://github.com/robert-strandh/SICL

The Cleavir compiler framework which is part of SICL defines
a modern version of the protocol for environment query defined
in the second edition of Guy Steele’s book [4]. We plan to extend
this protocol to include information about the name of the generic-
function class and of the method class given (explicitly or implicitly)
in a defgeneric form previously encountered in the current com-
pilation environment. Since our existing protocol returns standard
objects, no modifications to the existing Cleavir code will be re-
quired as a result of this extension. The extension will allow us
to define the macro defmethod in SICL to query the environment,
and to invoke make-method-lambda with appropriate arguments.

A PROTOCOL
In this appendix we present the additional generic functions making
up the protocol for our first-class global environments.

In order for our definitions to fit in a column, we have abbreviated
“Generic Function” as “GF”.

function-class-name fname env [GF]
This generic function returns the name of the class of the func-

tion associated with fname in env.
If fname is not associated with an ordinary function or a generic

function in env, then an error is signaled.

(setf function-class-name) class-name fname env [GF]
This generic function is used to set the class name of the function

associated with fname in env to class-name.
If fname is associated with a macro or a special operator in env,

then an error is signaled.

method-class-name fname env [GF]
This generic function returns the name of the method class of

the function associated with fname in env.
If fname is not associated with a generic function in env, then

an error is signaled.

(setf method-class-name) class-name fname env [GF]
This generic function is used to set the class name for methods

of the function associated with fname in env to class-name.
class-name must be a symbol naming a class.
If fname is not associated with a generic function in env, then

an error is signaled.

REFERENCES
[1] INCITS 226-1994[S2008] Information Technology, Programming Language, Common

Lisp. American National Standards Institute, 1994.
[2] Pascal Costanza and Charlotte Herzeel. make-method-lambda considered harmful.

Technical report, Vrije Univrsiteit Brussels, Belgium, 2008.
[3] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol. MIT

Press, Cambridge, MA, USA, 1991. ISBN 0262111586.
[4] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital Press, Newton,

MA, USA, 1990. ISBN 1-55558-041-6.
[5] Robert Strandh. First-class global environments in common lisp. In Proceedings

of the 8th European Lisp Symposium, ELS ’15, pages 79 – 86, April 2015. URL
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf.

ELS 2019 23

24 ELS 2019

Session III: Metaprogramming

Monday, 1.4.2019

14:30–15:00 Jim Newton and Didier Verna: Finite Automata Theory Based Optimization of Conditional Variable Binding
15:00–15:30 Marco Heisig: Lazy, parallel multiple value reductions in Common Lisp
15:30.-16:00 Coffee break

ELS 2019 25

Finite Automata Theory Based Optimization of Conditional
Variable Binding

Jim E. Newton
Didier Verna

jnewton@lrde.epita.fr
didier@lrde.epita.fr

EPITA/LRDE
Le Kremlin-Bicêtre, France

ABSTRACT
We present an efficient and highly optimized implementation of
destructuring-case in Common Lisp. This macro allows the se-
lection of the most appropriate destructuring lambda list of several
given based on structure and types of data at run-time and there-
after dispatches to the corresponding code branch. We examine an
optimization technique, based on finite automata theory applied
to conditional variable binding and execution, and type-based pat-
tern matching on Common Lisp sequences. A risk of inefficiency
associated with a naive implementation of destructuring-case
is that the candidate expression being examined may be traversed
multiple times, once for each clause whose format fails to match,
and finally once for the successful match. We have implemented
destructuring-case in such a way to avoid multiple traversals of
the candidate expression. This article explains how this optimiza-
tion has been implemented.

CCS CONCEPTS
• Theory of computation → Data structures design and anal-
ysis; Type theory;
ACM Reference Format:
Jim E. Newton and Didier Verna. 2019. Finite Automata Theory Based
Optimization of Conditional Variable Binding. In Proceedings of the 12th
European Lisp Symposium (ELS’19). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.2635412

1 INTRODUCTION
The Common Lisp macro destructuring-bind [1] binds the vari-
ables specified in a given lambda list to the corresponding values in
the tree structure resulting from the evaluation of a given expres-
sion. However, in the case that the tree structure of the expression
does not coincide with the given lambda list, a run-time error is
signaled. This error may pose a challenge to the programmer. The
problem, simply stated, is that the destructuring lambda list [1,
Section 3.4.5] is specified at compile time, and the expression is
evaluated at run-time. Thus, it may not be possible to know until
run-time that the input data is problematic. In certain cases the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2635412

(destructuring-case expression

((X Y)

(declare (type fixnum X Y))

:clause-1)

((X Y)

(declare (type fixnum X)

(type integer Y))

:clause-2)

((X Y)

(declare (type (or string fixnum) X)

(type number Y))

:clause-3))

Figure 1: Example of destructuring-case usage.

programmer would like to specify the run-time behavior to take if
the match fails, rather than having an error signaled. This behavior
cannot be specified portably using the condition system [1, Chap-
ter 9], because the condition signaled is simply of type error with
no additional information about exactly what failed. Furthermore,
the programmer may not wish to signal an error at all, but rather
detect the actual run-time pattern of the input data and proceed
differently depending on which format of data is discovered.

We presented destructuring-case in [11] as a mechanism to
test run-time adherence of the destructuring lambda list to the value
of a candidate expression. An example usage of this macro can be
seen in Figure 1. This example shows three clauses, each with the
same lambda list, (X Y), but with different type declarations. In gen-
eral, a usage of destructuring-case may use radically different
lambda lists, which differ in number of variables, having different
&optional and &key sections, and also using different hierarchical
structure of the variables.

The semantics of destructuring-case are that the value of
the given expression is tested in turn against each of the given
destructuring lambda lists, until a match is found, i.e. a match in
both hierarchical structure and type of values. Only at such time
are the indicated consequent expressions or any default values
evaluated. This restriction is especially important if there are side-
effects in the default values of optional arguments in the lambda
lists such as (... &optional (x (incf *global-var*))).

26 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Jim E. Newton and Didier Verna

(rte-case expression

((:cat fixnum fixnum)

(destructuring-bind (X Y) expression

:clause-1))

((: cat fixnum integer)

(destructuring-bind (X Y) expression

:clause-2))

((: cat (or string fixnum) number)

(destructuring-bind (X Y) expression

:clause-3)))

Figure 2: Expansion of destructuring-case from Figure 1
into rte-case.

(rte-case expression

((: cat fixnum fixnum)

:clause-1)

((: cat fixnum integer)

:clause-2)

((: cat (or string fixnum) number)

:clause-3))

Figure 3: Simple example of rte-case from Figure 2.

The implementations of the macros discussed in this arti-
cle, including destructuring-case, rte-case, rte-ecase, and
bdd-typecase, are available in Quicklisp1 via the package :rte.

2 FROM DESTRUCTURING-CASE TO RTE-CASE
Our implementation of destructuring-case converts its input
of destructuring lambda lists to rte (regular type expression) and
then outputs an invocation of rte-case. The essential part of such
an expansion is shown in Figure 2. An rte, introduced in [11], is
Common Lisp syntax to specify a set of sequences, i.e. a subtype of
the sequence type. We explain in Section 2.2 how a destructuring
lambda list is converted to an rte.

As can be seen in Figure 2, each destructuring lambda list has
been converted to an rte such as (:cat fixnum fixnum) in the first
clause, followed by a call to destructuring-bind. As is implied by
the syntax, the destructuring-bind will only be executed at run-
time if the value of the candidate expression matches the pattern
designated by the rte.

We further notice in the simplistic example shown in Figure 2,
that no destructuring-bind in the rte-case expansion plays
any role. The variables bound by the destructuring-bind are
not used in the expressions which follow. Therefore, in our further
discussion we will refer to the even simpler, semantically equivalent
code in Figure 3.

A straightforward expansion of rte-case might include succes-
sive type checks of expression such as suggested in Figure 4. Such
an expansion would be semantically correct, but inefficient because
the sequence expression would be traversed three times in the

1Quicklisp, https://www.quicklisp.org/, is a public repository, maintained by Zach
Beane, consisting of user contributed Common Lisp libraries.

(typecase expression

((rte (:cat fixnum fixnum))

:clause-1)

((rte (:cat fixnum integer))

:clause-2)

((rte (:cat (or string fixnum) number))

:clause-3))

Figure 4: Naive expansion of rte-case from Figure 2

worst case, to determine which consequent clause to evaluate. As
will be seen, our technique eliminates these redundant traversals,
allowing one single traversal of the sequence to be executed and
thereby determining which consequent expressions to evaluate.2

2.1 Examples of rte Syntax
The grammar an rte is explicitly detailed in [9]. Nevertheless, the
basic grammar can be understood intuitively, assuming the reader
has a basic understanding of string-based regular expression syntax.
The concatenation operator, :cat specifies a sequences successive
elements: e.g., (:cat fixnum string) denotes a sequence of ex-
actly two elements, the first of type fixnum and the second of type
string. To make the string optional use the syntax (:cat fixnum
(:? string)). To specify the occurrence, zero or more times, of
fixnum followed by an optional string, use (:cat (:* fixnum)
(:? string)). Substitute :+ for :* to express an occurrence of
one or more times. Finally, expressions may be combined logically
using :and, :or, and :not, e.g., (:or (:cat fixnum string) (:+
(:not number))).

2.2 From Destructuring Lambda List to rte
In this section we summarize how a destructuring lambda list and
associated type declarations may be converted into an rte. The
conversion procedure is explained in more detail in [11].

The set of lists which are valid argument lists for a given invoca-
tion of destructuring-bind with an optional set of type declara-
tions can be characterized by an rte. A destructuring lambda list,
such as used in destructuring-bind, specifies a required portion,
denoted by a leading sequence of variables; an optional portion,
delimited by &optional; and a repeating portion of keyword value
pairs, delimited by &key. To construct the rte corresponding to a
given destructuring lambda list, we construct the required-rte, the
optional-rte, and the repeating-rte, and concatenate them using the
:cat operator.

(:cat required-rte optional-rte repeating-rte)
As an example, consider the lambda list shown in Figure 5. The

required portion and optional portions are easy.

required-rte = (:cat string string)

optional-rte = (:? list)

2The reader may well notice that a fourth traversal is also necessary to evaluate the
destructuring-bind which is present in each of the consequent clauses. In this paper
we do not address the elimination of this fourth traversal.

ELS 2019 27

Finite Automata Theory Based Optimization of Conditional Variable Binding ELS’19, April 01–02 2019, Genova, Italy

(destructuring-bind (A B &optional Q &key X Y)

expression

(declare (type string A B)

(type list Q)

(type real X)

(type integer Y))

...)

Figure 5: Example destructuring-bind with declarations

The repeating portion deserves careful attention; we consider
two restrictions.

(1) If &allow-other-keys is not given, such as is the case in
Figure 5, then the only allowed keywords are those explicitly
specified. In our case the only allowed keywords are :X
and :Y, meaning the repeating portion is also of the form

(:* (:cat (member :X :Y) t)) .

(2) Type declarations such as (declare real X) only restrict
the value associated with the first occurrence of each key-
word in an argument list, because only the first such occur-
rence is bound the the associated variable [1, Section 3.3.4].
A keyword portion of the argument list such as (:X 1.2
:X ’not-real) is perfectly valid, whereas (:X ’not-real
:X 1.2) is not. Thus, we iterate over all specified keywords,
generating one pattern for each. The pattern handling &key
X requires that either there is either no :X given, or that the
first :X is followed by a real. See the note restriction 2
in Figure 6.

Putting all these restrictions together, we have the rte in Figure 6
representing the destructuring-bind with type declarations in
Figure 5.

There are several other features of destructuring-bind which
are supported by destructuring-case, but whose details we omit
in this discussion, including tree structure variables/data, default
values, supplied-p-parameter, &allow-other-keys, and others.

3 FROM RTE-CASE TO INDIVIDUAL DFAS
Each rte shown in Figure 3 can be converted to efficient type check-
ing Common Lisp code, as explained in [11]. Such conversion in-
volves first converting each rte to a deterministic finite automaton
(DFA), where the transition labels represent type checks for succes-
sive elements of the candidate expression. Figure 7 shows the three
DFAs corresponding to the rte-case in Figure 3.

We now summarize how a deterministic finite automata (DFA) is
constructed, given an rte. Some approaches to such generation, such
as [6, 15], involve constructing a non-deterministic finite automa-
ton and thereafter determinizing it. We use the technique presented
by Brzozowski [2] and clarified by Owens [13]. The Brzozowski
algorithm uses a technique called the rational derivative, to con-
struct a DFA, and thereby obviating the necessity to determinize
the result. In [9, 11], we explain how the rational derivative can
be extended to accommodate Common Lisp types, in particular
rather than calculating the rational derivative (as Owens suggests)
with respect to each letter of the alphabet, instead we calculate the

(:cat

;; required-rte

(:cat string string)

;; optional-rte

(:? list)

;; repeating-rte

(:and

;; restriction 1

(:* (:cat (member :X :Y) t))

;; restriction 2 for :X real

(:or (:* (:cat (:not (eql :X)) t))

(:cat (:* (:cat (:not (eql :X)) t))

(eql :X) real

(:* t)))

;; restriction 2 for :Y integer

(:or (:* (:cat (:not (eql :Y)) t))

(:cat (:* (:cat (:not (eql :Y)) t))

(eql :Y) integer

(:* t)))))

Figure 6: The rte representing the destructuring-bind and
type declarations from Figure 5.

(:cat fixnum fixnum)

1.0 1.1
T1

1.2
T1

clause-1

(:cat fixnum integer)

2.0 2.1
T1

2.2
T2

clause-2

(:cat (or string fixnum) number)

3.0 3.1
T5

3.2
T3

clause-3

Label Type specifier
T1 fixnum
T2 integer
T3 number
T5 (or string fixnum)

Figure 7: Automata for clauses of rte-case in Figure 2

derivative with respect each type calculated in the maximal disjoint
type decomposition as explained in [12].

3.1 Constructing States and Transitions
The algorithm can be summarized as follows. Each state in the DFA
represents all the possible futures which are accepting. Moreover,

28 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Jim E. Newton and Didier Verna

there is a (not necessarily unique) rte which expresses that set of
futures. For example, let:

P1 = (:or (:cat number string) (:cat fixnum float))

be the rte representing all the sequences of either a number followed
by a string or a fixnum followed by a float. Suppose there is a
state in the DFA associated with this rte. Now we consider all the
possible types of the first element of such a sequence. And for each
such first element type, we calculate what the remaining future
would be given that the first element of that type. If the first element
is a fixnum, then the future is a sequence containing either a string
or a float. Such a sequence is denoted by the rte (:or string
float). In terms of the rational derivative we say:

P2 = ∂fixnumP1 = (:or string float) .

If, on the other hand, the first element is not a fixnum but is a
number, then the remaining sequence whose only element is a
string. That is to say:

P3 = ∂(and number (not fixnum))P1 = string .

Since there is no other possible first element of P1, we con-
struct two additional states, P2 and P3 and construct two transitions
P1 → P2 labeled fixnum, and P1 → P3 labeled (and number (not
fixnum)).

We continue this process until all the futures of each state have
been calculated, generating all the possible states, and all the possi-
ble transitions between the states.

3.2 Associating Code with Accepting States
DFAs used for matching pattern languages such as regular expres-
sions, normally represent Boolean functions; returning TRUE if the
sequence matches the expression, and FALSE otherwise. In our case
each accepting state of the DFAs in Figure 7 indicate which code
paths to take in the originating rte-case, Figure 3. This problem is
easily addressed. We have simply extended our state object (Clos
class [5, 7]) to contain a slot indicating a piece of continuation code
to be serialized in the final macro expansion.

3.3 Overlapping Clauses
The synchronized cross-product (SXP) of two or more given DFAs is
a single DFA whose behavior simultaneously emulates the behavior
of the given DFAs. Typically such a cross-product implements the
intersection or union languages of the input DFAs; however the
semantics of such a cross-product can be taken to be any Boolean
combination of the input.

For example, to implement the symmetric difference language
we apply the Boolean XOR function; a state, X, in the SXP, cor-
responding to states A and B from two given DFAs, is marked as
an accepting state if A XOR B are accepting (if either but not both
are accepting). In our case we would like to select the code for
evaluation corresponding to the code appearing first in the original
destructuring-case; so we need priority based selection, rather
than simply a Boolean function.

An important property of the behavior of rte-case is that if
more than one pattern matches the expression in question, then
the clause appearing first has priority over the others. For example,
in the code in Figure 3, if the value of expression is the list (1

(rte-case expression

((:cat fixnum fixnum)

:clause-1)

((:and (:cat fixnum integer)

(:not (:cat fixnum fixnum)))

:clause-2)

((:and (:cat (or string fixnum) number)

(:not (:cat fixnum fixnum))

(:not (:cat fixnum fixnum)))

:clause-3))

Figure 8: Example of rte-case with pairwise disjoint pat-
terns

(:cat fixnum fixnum)

1.0 1.1
T1

1.2
T1

clause-1

(:and (:cat fixnum integer)

(:not (:cat fixnum fixnum)))

2.0 2.1
T1

2.2T1

2.3

T6

clause-2

(:and (:cat (or string fixnum) number)

(:not (:cat fixnum integer))

(:not (:cat fixnum fixnum)))

3.0

3.1T4

3.3

T1

3.2
T3

clause-3

3.4
T2

3.5

T7

clause-3

Label Type specifier
T1 fixnum
T2 integer
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)

Figure 9: DFAs for disjoined clause-1, clause-2, and clause-3

2), then all three rtes match; nevertheless :clause-1 must be the
return value.

An approach of addressing this ambiguity is to extend or aug-
ment the patterns so that they are mutually exclusive; i.e. assure

ELS 2019 29

Finite Automata Theory Based Optimization of Conditional Variable Binding ELS’19, April 01–02 2019, Genova, Italy

that no two patterns simultaneously match any candidate expres-
sion. The code shown in Figure 8 is equivalent to that in Figure 3
but any input expression, (1 2), for example, matches at most
one pattern. This pattern augmentation can be accomplished as a
code transformation. The pattern corresponding to :clause-1 is
unchanged, but the subsequent clauses have been augmented to
emphasize that those clauses are never reached if any prior pattern
matches.

These rtes correspond to the DFAs shown in Figure 9. The first
DFA is exactly the same as before, but we notice in the second DFA
that the state labeled 2.2 is non-coäccessible; i.e., there is no path
from state 2.2 to any accepting state. This non-useful state corre-
sponds to (:not (:cat fixnum fixnum)) in the input pattern,
and it enforces that a sequence consisting of two objects of type
fixnum, is a rejected sequence rather than a matching sequence.
The third DFA in the figure contains a similar state, 3.4, but in
addition, contains two states 3.2 and 3.5 which are equivalent to
each other.

The disjoining process described here produces DFAs which
have redundant or non-coäccessible states. Despite this fact, these
slightly more complex DFAs play an important role in the SXP con-
struction, because the process guarantees that the SXP construction
will never encounter a situation where it must choose between two
different pieces of code to execute on reaching an acceptance condi-
tion. If attempting to calculate the union of the three DFAs shown
in Figure 7, the algorithm would have to deal with the fact that a
sequence of (1 2) at run time should return :clause-1 rather than
:clause-2. However, if calculating the union of the DFAs from
Figure 9, such ambiguity is averted. The union can be performed
purely algebraically, with no consideration or order of priority.

4 MERGING DFAS INTO SYNCHRONIZED
CROSS-PRODUCT DFA

We explain in detail in [9] how the type check associated with an
rte is compiled to efficient Common Lisp code by first converting it
to a deterministic finite automaton. It is further pointed out in the
perspectives of [9] that it is desirable to merge these automata into
a single automaton in order to share states between the various
automata which serve the same function, and also to eliminate
redundant traversals of the candidate expression. Having a single
automaton which implements the union of the mutually exclusive
patterns enables the candidate list to be traversed once and thereby
matching any one of the expressions specified in the various clauses
of the rte-case.

One advantage of the conversion from destructuring lambda list
to rte is that rtes support an algebra sufficient for expressing sets
of non-overlapping types, resulting in mutually exclusive patterns
in the expansion to rte-case. As an additional feature of the im-
plementation of rte-case, we have arranged so that it treats the
code in Figure 3 and Figure 8 exactly the same, internally disjoining
patterns which are not already disjoint.

The following is an explanation of how several automata are
merged into such a single automaton.

We would like to merge the three DFAs shown in Figure 9 into a
single DFA. There are well known techniques for merging multiple

dfa2 dfa3 intersection Target State
T1 T1 T1 (2.1, 3.3)
T1 T4 ∅
T1 ⊤ \ (T1 ∪T4) ∅
⊤ \T1 T1 ∅
⊤ \T1 T4 T4 (⊥, 3.1)
⊤ \T1 ⊤ \ (T1 ∪T4) ⊤ \ (T1 ∪T4) (⊥, ⊥)

Figure 10: Transition Computation for dfa2 × dfa3

DFAs [6, 15] into the SXP DFA. These techniques are not general
enough for several reasons which we address in our approach.

It is not necessary to explicitly consider the SXP of more than
two DFAs, because the operation is associative. Therefore, given the
Common Lisp function synchronized-product, we may compute
the SXP of one or more DFAs as a call to cl:reduce.

(reduce #'synchronized-product dfas)

4.1 Calculating States and Transitions
We consider constructing the SXP of two DFAs, dfa-1 (withn states)
and dfa-2 (with m states). We construct a DFA, dfa-3, having
m ×n states, worst case; one state for each pair (x,y) with x ∈ dfa1
and y ∈ dfa2. Fortunately, this worst case does not often occur in
practice as many of the states are not accessible. For example, if
computing the SXP of the first two DFAs of Figure 9, there is no
possible input sequence which would put dfa1 into state 1.1 while
putting dfa2 into state 2.2. Thus there will be no state in the product
DFA corresponding to (1.1, 2.2).

An efficient algorithm is described in [15]. We seed a work list
with the one initial state. Next, we traverse the work list, growing
it by adding new states as we construct them. All possible input
types are considered for each state, and all possible transitions are
generated.

An example will make this clearer. First start with dfa2 and dfa3,
the second and third DFAs illustrated in Figure 9. The states list is
initialized to S = {(2.0, 3.0)}.

We examine the behavior of states 2.0 and 3.0. We must char-
acterize the behavior for every possible input. This infinite set of
potential input values is partitioned into several disjoint types:
those annotated on transitions exiting state 2.0 and 3.0, and the
complement of their union. This complement type represents the
set of all values for which an implicit transition leads to the virtual
so-called sync state, denoted ⊥. The sync state is a state which has
exactly one exiting, all encompassing, transition: ⊥ ⊤−→ ⊥.

State 2.0 has one explicit transition, namely 2.0 T1−−→ 2.1. Thus,

there is an implicit complement transition 2.0
⊤\T1−−−−→ ⊥, where ⊤

represents the universal type. State 3.0 has two explicit transitions:
namely 3.0 T1−−→ 3.3 and 3.0 T4−−→ 3.1. Thus, there is an implicit

complement transition 3.0
⊤\(T1∪T4)−−−−−−−−→ ⊥.

To compute the transitions from (2.0, 3.0), we must consider
all six pairwise intersections between the transition types of the
two states (2.0 and 3.0). These intersections are shown in Figure 10,
which also indicates the target states in the three non-empty cases.

30 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Jim E. Newton and Didier Verna

0

2
T4

1

T1

7
T3

6
T7

5
T1

4

T6

3

T9

clause-3

clause-1

clause-2

clause-3

Label Type specifier
T1 fixnum
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)
T9 (and integer

(or (not integer) fixnum)
(not fixnum))

Figure 11: DFA for rte-case not yet reduced

Given an input of type fixnum, dfa2 transitions from state 2.0 to
state 2.1; and given the same input dfa3 transitions from state 3.0 to
state 3.3. So we add (2.1, 3.3) to S ; S = S = {(2.0, 3.0), (2.1, 3.3)},
and add transition (2.0, 3.0) T1−−→ (2.1, 3.3). Likewise, given an input
of type string, dfa2 transitions from state 2.0 to state ⊥; and given
the same input dfa3 transitions from state 3.0 to state 3.1. So we
add (⊥, 3.1) to S ; S = S = {(2.0, 3.0), (2.1, 3.3), (⊥, 3.1)}, and add
transition (2.0, 3.0) T4−−→ (⊥, 3.1). Finally, given an input of type
(and (not fixnum) (not string)), dfa2 transitions from state
2.0 to state ⊥, and dfa3 transitions from state 3.0 to state ⊥. The
state (⊥,⊥) is the sync state of the cross product DFA so we need
generate no additional transition from (2.0, 3.0).

Next, we to apply the same procedure to calculate any new states
and transitions of any newly added elements of S . We continue the
procedure until all elements of S have been visited, and no new
states were generated.

After dfa2 × dfa3 has been computed, we can repeat the process
via the reduce operation mentioned above to compute dfa1×dfa2×
dfa3. This procedure constructs a DFA isomorphic to that shown in
Figure 11. We say isomorphic because the choice of state names is
arbitrary. Figure 11 has states named 0 through 7 rather name names
such as (1.0, 2.0, 3.0), (1.1, 2.1, 3.3) as suggested in the procedure
description in Section 4.1.

The DFA shown in Figure 11 is not in minimal form. It has a non-
coäccessible state, 3, from which there is no path to an accepting
state. It also has indistinguishable states; e.g., states 6 and 7 have the
exact same future, albeit a trivial one of just returning the symbol
clause-3. Since each of the states in the computed DFA and each

s ∈ S υ ∈ ϒ δ (s,υ)
0 T1 1
0 T4 2
1 T1 5
1 T6 4
1 T7 6
2 T3 7

s ∈ S υ ∈ ϒ ψ1(s,υ) ∈ Π0
0 T1 {0, 1, 2}
0 T4 {0, 1, 2}
1 T1 {5}
1 T6 {4}
1 T7 {6, 7}
2 T3 {6, 7}

s ∈ S Φ1(s)
0

{ (T1, {0, 1, 2}), (T4, {0, 1, 2})
}

1
{ (T1, {5}), (T6, {4}), (T7, {6, 7})

}
2

{ (T3, {6, 7})
}

4 ∅
6 ∅
7 ∅

Figure 12: All values of the δ ,ψ1, and Φ1 functions.

of the transitions contribute to the number of lines of Common Lisp
code which will be generated when the DFA is serialized in Section 5,
we should simplify this DFA to reduce the lines of redundant code
in the final macro expansion.

We eliminate non-coäccessible states by a simply trimming pro-
cedure based on graph traversal, finding states which lack a path
to an accessible state. However, the procedure to coalesce indistin-
guishable states is more subtle, and we discuss it in Section 4.2.

4.2 DFA Simplification
The goal of simplification is to coalesce indistinguishable states
such as states 6 and 7 in Figure 11, to result in the DFA in Figure 13.

In order to give a good explanation of the simplification algo-
rithm we need some notation. Let S denote the set of states of the
DFA, S = {0, 1, 2, 4, 5, 6, 7}. Let ϒ denote the set of all Common
Lisp types annotated in the DFA: ϒ = {T1,T3,T4,T6,T7}. Denote the
state transfer function, δ , which given a state, si ∈ S, and a type
υ ∈ ϒ, returns the target state, sj ∈ S of the transition si

υ−→ sj . The
values of δ are given in Figure 12 (top left).

We will construct a sequence {Π1,Π2, ...Πn, ...} of partitions
of S. A partition of S is a set of mutually disjoint subsets of S for
which the union of the subsets is S itself. Each element κ ∈ Πk is
called a k-equivalence class. If si , sj ∈ κ, then si and sj are said to
be k-equivalent to each other.

To construct the initial partition, Π0, we group the set of all non-
accepting states into one 0-equivalence class: {0, 1, 2}; thereafter,
there is one 0-equivalence class per unique return value: :clause-1,
:clause-2, and :clause-3: {5}, {4}, and {6, 7} respectively.

Π0 = {{0, 1, 2}, {4}, {5}, {6, 7}}
Next, we wish to construct Π1, Π2, ... Πn , Πn+1 in turn, continu-

ing the iteration until Πn = Πn+1. Each Πk is derived from Πk−1
as we will explain.

For each integer k > 0, to determine the k-equivalence classes
we define two functionsψk and Φk .3 In each case, we will construct

3ψ is referred to as the partition transformation function. Φ is referred to as the
partition image function.

ELS 2019 31

Finite Automata Theory Based Optimization of Conditional Variable Binding ELS’19, April 01–02 2019, Genova, Italy

0

2T4

1

T1

6
T3

T7

5T1

4

T6

clause-3

clause-1

clause-2

Label Type specifier
T1 fixnum
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)

Figure 13: DFA for rte-case simplified

ψk+1 and Φk+1 by examining Πk . These two functions may be dif-
ficult to understand intuitively from their mathematical definitions.
Nevertheless, the mathematical definitions help when coding the
simplification function in Common Lisp.
ψk+1 is a function which takes two arguments, s ∈ S and υ ∈ ϒ,

and returns a k-equivalence class κ ∈ Πk . (I.e.,ψk+1 : S × ϒ→ Πk)
To compute the value ofψk+1(s,υ), we select and return the unique
κ ∈ Πk for which δ (s,υ) ∈ κ. Figure 12 (top right) shows all the
values ofψ1.

Φk+1 takes an element s ∈ S and returns a set of order pairs,
each of the form (υ,κ) where υ ∈ ϒ and κ ∈ Πk . Φk+1(s) is defined
as the set of all pairs (υ,ψk+1(s,υ)), such that υ ∈ ϒ, and such that
ψk+1(s,υ) exists. Figure 12 (bottom) shows all the values of Φ1.

Now we construct the (k+1)-equivalence classes by splitting the
k-equivalence classes; i.e. we refine Πk to construct Πk+1, so that
every κ ∈ Πk+1 contains those elements which have the same
value of Φk+1. This rule implies that if κ has is a singleton set
(e.g. {4} ∈ Π0, and {5} ∈ Π0), then κ ∈ Πk+1 (i.e. {4} ∈ Π1, and
{5} ∈ Π1).

Consider the 0-equivalence class {0, 1, 2} ∈ Π0. Since Φ1(0),
Φ1(1), and Φ1(2) have three different values, then we must further
partition {0, 1, 2} into three distinct 1-equivalence classes {0}, {1},
and {2}.

Consider the 0-equivalence {6, 7}. Since Φ1(6) = Φ1(7), then
{6, 7} is a 1-equivalence class, and {6, 7} ∈ Π1.

Π1 = {{0}, {1}, {2}, {4}, {5}, {6, 7}}
If we repeat this process, generating the functions ψ2 and Φ2,

and use Φ2 to construct Π2, we would find that Π2 = Π1, which
means Π1 is a fixed point of the procedure.

Π2 = {{0}, {1}, {2}, {4}, {5}, {6, 7}}
We can use Π1, directly, to construct the minimum DFA shown

in Figure 13. We simply merge the states which are 1-equivalent.
We have determined that states 6 and 7 are 1-equivalent, and no
others. We can thus construct the DFA in Figure 13 by merging
states 6 and 7 from Figure 11.

(let* ((g1 expression)

(g2 g1))

(block check

(tagbody

s.0

(unless g1 (return-from check nil))

(typecase (pop g1)

(fixnum (go s.2))

(string (go s.1))

(t (return-from check nil)))

s.1

(unless g1 (return-from check nil))

(typecase (pop g1)

(number (go s.3))

(t (return-from check nil)))

s.2

(unless g1 (return-from check nil))

(typecase (pop g1)

(fixnum

(go s.4))

((and (not integer) number)

(go s.3))

((and (not fixnum) integer)

(go s.5))

(t (return-from check nil)))

s.3

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type (or string fixnum) X)

(type number Y))

:clause-3)))

(case (pop g1)

(t (return-from check nil)))

s.4

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type fixnum X Y))

:clause-1)))

(case (pop g1)

(t (return-from check nil)))

s.5

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type fixnum X)

(type integer Y))

:clause-2)))

(case (pop g1)

(t (return-from check nil))))))

Figure 14: Macro expansion of rte-case from Figure 2 and
consequently of destructuring-case from Figure 1.

5 OPTIMIZED CODE GENERATION
Figure 14 shows the essential part of the final macro expansion of
the rte-case shown in Figure 2. Each state in the DFA corresponds

32 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Jim E. Newton and Didier Verna

to a label within a tagbody, a conditional unless checking for end
of sequence, and a typecase with one branch per transition in the
DFA, including the implicit transition to⊥. We have used typecase
in this example output, but the reader may well notice that there
are several occurrences of redundant type checks in the output. For
example, the typecase at label s.2 in Figure 14 contains multiple
checks for fixnum and integer. We showed in [10] how these
redundant type checks might be eliminated simply by replacing
typecase with bdd-typecase.

6 PREVIOUS WORK
Attempts to implement destructuring-case are numerous. We
mention three here. R7RS Scheme provides case-lambda [14, Sec-
tion 4.2.9], allowing fixed length argument lists, but lacking any
sort of destructuring; the implementation of destructuring-case
provided in [3] is missing tree-structure-based clause selection;
the implementation provided in [4], provides tree-structure-based
clause selection, but not within the &optional nor &key portion.
In none of these cases does the clause selection consider the types
of the objects within the list being destructured.

Manuel and Ramanujam [8] introduce automata over infinite
alphabets, which seems to be an interesting theoretical approach
of viewing DFA whose transitions are Common Lisp types. Manuel
and Ramanujam do not investigate questions of construction and
simplification as we have investigated in our approach.

6.1 Conclusion and Perspectives
The simplification algorithm described in Section 4.2 may not guar-
antee a minimum result. For example, reconsider Φ1 in Figure 12
(bottom). Suppose T3 = T ′ ∪ T ′′, and suppose there exists s ∈ S
such that Φ(s) = {(T ′, {6, 7}), T ′′, {6, 7}}. In such a case, states 2
and s would be indistinguishable, but not mergable with the sim-
plfication algorithm we have described. More research is needed
to determine whether such a case can occur, and what the most
general form is. Such analysis is necessary to accomplish our goal
of generalizing finite automata theory on finite alphabets to handle
infinite alphabets representable as disjoinable types.

In the procedure described in Section 4, we constructed the SXP
starting with DFAs which were sub-optimal. The DFAs shown in
Figure 9 have states which are not coäccessible: states 2.2 and 3.4.
Furthermore, one of the DFAs has states 3.2 and 3.5 which are
indistinguishable. If we choose to trim and simplify the input DFAs
before constructing the SXP there seem to be cases where we reduce
the number of state pairs which need to be visited.

A natural question is whether it is better to simplify the input
DFAs before computing the SXP, simplify after, or both. One might
be tempted to claim that we should always simplify DFAs before
computing the SXP. However, we do not currently have enough
data to confidently support this claim.

We also discussed in Section 3.3 a technique for making the
DFAs match non-overlapping languages before attempting to cal-
culate the SXP. This technique avoids having to make priority
based decisions when the languages overlap. We thereafter saw
that this technique produces DFAs with non-coäccessible states. It
may well be worth investigation whether robustly implementing
the priority based SXP procedure is more efficient, as the input

DFAs would themselves be smaller in many cases, and be absent
the non-coäccessible states.

The rte-casemacro we discuss in this paper does not attempt to
answer questions about exhaustiveness. It is possible however, to en-
hance the rte-case macro with rte-ecase (exhaustive rte-case)
which would append a final otherwise clause, (:* t). This clause
would serve at compile time to detect whether the leading clauses
are exhaustive; for if no state in the DFA corresponds to this
:otherwise-clause, then the given rte patterns are exhaustive.
However, if there is a path in the DFA from an initial state to the
:otherwise-clause, then the type labels on such a path form a
type signature for such a counter example. The types of the elements
of such a counter-example sequence could easily be generated by
finding any transit through the DFA, and clipping away any loops
it contains. The macro might also produce a compiler warning, as
well as insert a call to error in the code in case the code path is
taken at run-time.

REFERENCES
[1] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[2] Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–

494, October 1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL http:
//doi.acm.org/10.1145/321239.321249.

[3] Public Domain. Alexandria implementation of destructuring-case. URL https:
//common-lisp.net/project/alexandria/draft/alexandria.html.

[4] Nobuhiko Funato. Public domain implementation of destructuring-bind, 2013.
URL https://gist.github.com/nfunato/6247751. accessed 14 October 2018, 12h36
+0200.

[5] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. CLOS: integrating object-
oriented and functional programming. Communications of the ACM, 34(9):29–38,
1991. ISSN 0001-0782.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

[7] Sonja E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s
Guide to CLOS. Addison-Wesley, 1989. ISBN 0-20117-589-4.

[8] Amaldev Manuel and Ramaswamy Ramanujam. Automata over infinite alphabets.
In Modern Applications of Automata Theory, pages 529–554. 2012. doi: 10.1142/
9789814271059_0017. URL https://doi.org/10.1142/9789814271059_0017.

[9] Jim Newton. Representing and Computing with Types in Dynamically Typed
Languages. PhD thesis, Sorbonne University, November 2018.

[10] Jim Newton and Didier Verna. Strategies for typecase optimization. In European
Lisp Symposium, Marbella, Spain, April 2018.

[11] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous
Sequences in Common Lisp. In European Lisp Symposium, Kraków, Poland, May
2016.

[12] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic Manipulation
of Common Lisp Type Specifiers. In European Lisp Symposium, Brussels, Belgium,
April 2017.

[13] Scott Owens, John Reppy, and Aaron Turon. Regular-expression Derivatives
Re-examined. J. Funct. Program., 19(2):173–190, March 2009. ISSN 0956-7968. doi:
10.1017/S0956796808007090. URL http://dx.doi.org/10.1017/S0956796808007090.

[14] Alex Shinn, John Cowan, and Arthur A. Gleckler. Revised 7 report on the
algorithmic language Scheme. Technical report, 2013.

[15] Francois Yvon and Akim Demaille. Théorie des Langages Rationnels.
EPITA LRDE, 2014. URL http://www.lrde.epita.fr/~akim/thlr/lecture-notes/
theorie-des-langages-rationnels.pdf. Lecture notes.

ELS 2019 33

Lazy, parallel multiple value reductions in Common Lisp
Marco Heisig

FAU Erlangen-Nürnberg
Cauerstraße 11

Erlangen 91058, Germany
marco.heisig@fau.de

ABSTRACT
Reductions, folds, or catamorphisms are an important component
of every functional programmer’s toolbox. However, common
manifestations of these operators can only operate on a single
sequence at once and don’t have any potential for parallel execution.

We present a new, parallelizable reduction operator that can
simultaneously reduce k arrays at once, using a function with 2k
arguments and k return values. We then discuss an e�cient imple-
mentation of this new reduction operator as part of the Petalisp
project.

CCS CONCEPTS
•So�ware and its engineering →Functional languages; Data
�ow languages; Parallel programming languages; Just-in-time
compilers;

KEYWORDS
Common Lisp, Reductions, Lazy Evaluation, Parallelism
ACM Reference format:
Marco Heisig. 2019. Lazy, parallel multiple value reductions in Common
Lisp. In Proceedings of the 12th European Lisp Symposium, Genova, Italy,
April 01–02 2019 (ELS’19), 6 pages.
DOI: 10.5281/zenodo.2642164

1 INTRODUCTION
�e reduction is one of the most versatile tools of the functional
programmer. Figure 1 de�nes the exemplary reduction operator
fold. Despite its simplicity, it captures the essence of what we �nd
in the standard libraries of Scheme, Haskell, Common Lisp and
many other programming languages: recursive processing of a data
structure and combination of values with a binary function.

(defun fold (f z l)1

(if (null l)2

z3

(fold f (funcall f (first l) z) (rest l))))4

Figure 1: A simple reduction operator: fold.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, Genova, Italy
© 2019 Copyright held by the owner/author(s). 978-2-9557474-3-8. . .$15.00
DOI: 10.5281/zenodo.2642164

�e simple four line function in �gure 1 is quite powerful, as
long as we con�ne ourselves to the domain of lists. Depending on
the supplied binary function and initial value, we can express a
variety of concepts:

• sum
(fold #’+ 0 numbers)
• product

(fold #’* 1 numbers)
• maximum

(fold #’max 0 non-negative-numbers)
• reversal

(fold #’cons ’() list)
• �ltering

(fold (lambda (i j) (if (oddp i) (cons i j) j))
’() list)

�e good news is that due to its tail-recursive structure, our
fold function can be run very e�ciently on a serial processor. �e
bad news, however, is that this function is completely unsuited for
execution on parallel hardware. �is gets apparent if we visualize
the data �ow of a particular call, as in �gure 2.

f

f

f

f

z (�rst l)

(second l)

(third l)

(fourth l)

Figure 2: Data-�ow graph of a call to fold.

A call to fold results in a dependency chain that has the same
length as the list being worked on and, consequentially, there is
zero potential for parallel execution. In a world of ubiquitous multi-
core processors, this is a huge and growing problem. Or, as Guy
Steele put it, “foldl and foldr Considered Slightly Harmful”[9].

In this paper, we present a reduction operator that has inher-
ent parallelism, addresses simultaneous reduction of multiple se-
quences and reductions of multi-dimensional arrays.

34 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

2 PETALISP
�is work has been developed as part of the Petalisp project[5, 6].
�e goal of Petalisp is to provide a model for data parallel program-
ming that �ts nicely into the existing general purpose programming
language Common Lisp. Petalisp programs are composed of only
a tiny number of core operators — parallel map, parallel reduce,
a�ne-linear data motion and data fusion — and only a single data
structure — the lazy array. Lazy arrays can be evaluated, i.e., turned
into Lisp arrays with the function compute.

As a convenience feature, Petalisp functions implicitly convert
arguments that are regular Lisp arrays to lazy arrays, and converts
all other arguments to lazy arrays of rank zero. Because of this im-
plicit conversion, most of the discussion in this paper can be carried
out without worrying about Petalisp at all, apart from inserting an
occasional call to compute for explicit evaluation.

�e minimalist set of features in Petalisp unlocks a lot of power-
ful optimizations, but means that its programs are fundamentally
limited by the semantics of its core operators. �at is one of the
reasons why we put so much e�ort into the de�nition of parallel
reduction.

3 RELATED WORK
We do not explicitly list each and every kind of reduction through-
out the computer science landscape, but report only operators that
have either inherent parallelism, or special support for handling
multiple values.

• �e Scheme languages includes a variety of operators for
folding and reducing list elements in SRFI-1[8]. Many of
them can operate on multiple lists at once, in which case
the combining function will receive one argument for the
accumulating value and one argument per list. However,
no special provisions exist for reducing multiple values at
once, and none of the functions is inherently parallel.

• �e parallel programming language NESL[1] permits hi-
erarchical reduction similar to ours, since its language
core supports nested parallel constructs. However, the ad-
vantage of our technique is that it is embedded into the
powerful general purpose language Common Lisp instead
of being a standalone tool. Furthermore, we are not aware
that NESL has capabilities for handling multiple values.

• �e MPI standard[4] for distributed programming includes
primitives for reducing potentially distributed data in par-
allel. It also permits reductions with user-de�ned functions
and, with the right annotations, changes to the order of
evaluation. But all MPI reductions are limited to reducing
a single array with a binary function.

• �e programming model of MapReduce[2] is similar to
the model provided by Petalisp. Here, processes are split
into a Mapper function to express embarrassingly parallel
tasks and a Reducer function describe how data is to be
accumulated. While MapReduce has excellent support for
parallelism, each Reducer function takes only a single key-
value pair and therefore su�ers from the same limitations
as most other reductions.

• Connection Machine Lisp[10] features a syntactic con-
struct for parallel, unordered reduction, named β. �is

construct has not only in�uenced the design of our reduc-
tion operator, it is also the origin of our operator’s name.

4 OUR TECHNIQUE
What follows is the de�nition of our reduction operator β.

function β f array &rest more-arrays → result*

�e supplied function f must accept 2k arguments and return k
values, where k is the number of supplied arrays in array and more-
arrays. All supplied arrays must have the same shape S , which is the
cartesian product of some ranges, i.e., S = r1 × . . . × rn , where each
range rk is a set of integers, e.g., {0, 1, . . . ,m}. �en β returns k
arrays of shape s = r2 × . . .× rn , whose elements are a combination
of the elements along the �rst axis of each array according to the
following rules:

(1) If the given arrays are empty, signal an error.
(2) If the �rst axis of each given array contains exactly one

element, drop that axis and return arrays with the same
content, but with shape s .

(3) If the �rst axis of each given array contains more than one
element, partition the indices of this axis into a lower half
l and an upper half u, such that r1 = l ∪ u and such that
either |l | = |u |, or |l | = |u | + 1. �en split each given array
into a part with shape l × s and a part with shape u × s .
Recursively process the lower and the upper halves of each
array independently to obtain 2k new arrays of shape s .
Finally, combine these 2k arrays element-wise with f to
obtain k new arrays with all values returned by f . Return
these arrays.

4.1 A Simple Example
Let us illustrate this de�nition with a simple example. If we apply
β to a binary function f and a vector with four elements, we start
out with k = 1 and the shape S = {(0), (1), (2), (3)}. We are dealing
with a rank one array, so the result will be a rank zero array.

Since the given array is neither empty, nor has just a single
element, we start out with an application of rule 3. �at means we
split the given array into a lower half with indices {(0), (1)} and an
upper half with indices {(2), (3)} and process each half recursively.
�e lower half is again subject to rule 3 and split into a part with
the sole index {(0)} and one with the sole index {(1)}. Further
recursive processing of each of these one-element arrays results in
an application of rule 2, where the given rank one array are turned
into equivalent rank zero array. �ese rank zero arrays are returned
to the previous application of rule 3, where their sole elements are
combined with the function f to form the content of the rank zero
array that is the value of the lower half. �e upper half is processed
analogously. Finally, these arrays are combined by yet another
application of the function f to obtain the �nal result. Figure 3
illustrates this process.

4.2 Discussion
We will now motivate and justify the individual design decisions
we made when de�ning β.

ELS 2019 35

Lazy, parallel multiple value reductions in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

f

f

(elt a 0) (elt a 1)

f

(elt a 2) (elt a 3)

Figure 3: Data-�ow graph of a call to β on a four element
vector.

Handling of Empty Arrays. It is common for reduction operators
to take an explicit initial element that is returned when processing
an empty sequence. �e function β, however, simply signals an
error for this case. �is behavior is best explained by looking at the
two cases how initial elements are typically used:

In the �rst case, the initial element has the same type as the
elements of the sequence and both arguments of the combining
function therefore have the same type. In this case, it is sometimes
possible to �nd a suitable initial element, e.g., zero for addition. But
in general there is no such element. A prominent example for this
general case is computing the maximum of a sequence of integers.
�e only sane initial element would be −∞, which is not an integer.

In the second case, the initial element has a di�erent type than
the elements of the sequence and, consequently, the arguments of
the combining function must be heterogeneous. In essence, the
initial element acts as an accumulator that is threaded through all
sequence elements sequentially. �is would directly con�ict with
our goal to allow parallel execution. Luckily, there is a suitable
equivalent for accumulation in our β operator, which is to convert
the array of values to an array of accumulators �rst, and to de�ne
the combining function such that it merges given accumulators1.
�e di�erence can be seen in �gure 4, where we use lists as ac-
cumulators and the function append as combining function. �e
function α that we use in this �gure is the lazy, parallel mapping
operator of Petalisp. Its semantics is similar to that of cl:map.

(defparameter *a* #(1 2 3 4 5 6))1

2

;; inherently serial3

(reduce #'cons *a* :initial-value '() :from-end t)4

5

;; parallel alternative6

(compute (β #'append (α #'list *a*)))7

Figure 4: Two ways to convert an array to a list.

�e Name β. Some readers might frown at the decision to use
a greek le�er as a function name. One frequent complaint is that
this renders any code using this function non-portable. �e other
frequent complaint is that modern keyboards o�er no easy way to
1Some readers might worry about the cost of creating an array of accumulators �rst.
But thanks to lazy evaluation, Petalisp can eliminate this temporary array and move
the creation of the accumulator directly into the reduction.

insert Greek le�ers. To the �rst complaint, we reply that parallel
programming is already outside of the scope of the Common Lisp
speci�cation, so the concern would only apply to the hypothetical
implementations that support concurrency, but not Unicode. To the
second complaint, we reply that there is plenty of IDE support for
inserting nonstandard characters, and that parallel programming is
so hard that the time spent typing should be negligible in contrast
to the time spent thinking.

Rank Zero Arrays Instead of Scalars. By de�nition, or function β
can never return scalar values, only arrays of rank zero. �is could
be an annoyance for the simple, frequent case of reducing vectors.
�e solution we developed here is that Petalisp treats scalars and
arrays of rank zero interchangeably. And, most importantly, when
calling compute to trigger explicit evaluation, all arrays of rank
zero are automatically converted to scalars.

Choice of Axis. According to our de�nition, reductions apply
only to the �rst axis of a given array. Another option would have
been to reduce along a speci�ed axis and to reduce the entire array
if no axis is explicitly speci�ed. While this would add some conve-
nience for the user, it would make β less orthogonal to the existing
set of Petalisp primitives. �e choice of axis can already be achieved
by permuting an array’s indices, which is already supported by
another Petalisp primitive. And the reduction of an entire array
with rank n can be emulated by n successive reductions. Figure 5
illustrates these techniques.

Subdivision Strategy. �e current subdivision strategy is to split
the �rst axis of an array into two equal halves, until the axis has
been reduced to a single index. As it can be seen in �gure 3, the
e�ect is that all array elements are e�ectively combined along the
nodes of a binary tree. One might wonder whether a di�erent
or more �exible subdivision strategy could be more e�cient, but
we decided not to pursue this thought further until we have an
excellent implementation of reduction on a binary tree.

One argument in favor of this reduction order is that it pro-
duces deterministic results. Since all Petalisp programs are just a
combination of core operators, and all other core operators are al-
ready deterministic, we gain the property that all Petalisp programs
are fully deterministic — a very desirable property for a parallel
programming language.

Arrays Only. Our de�nition of β requires that all its arguments
but the combining function are arrays (or, lazy arrays) and not, e.g.,
arbitrary sequences. �e reason for this is that e�cient execution
requires that both the shape and the elements of each argument
must be accessible in O(1) time. However, it is conceivable that
future versions of Petalisp will also support lazy arrays whose
backing storage is a user de�ned sequence with fast random access,
e.g., as proposed by Rhodes[7].

Multiple Values. Coming from statically typed functional lan-
guages, one might wonder why we bother with functions returning
multiple values, when we just could have used tuples and let the
compiler optimize them away. One reason is that this way, even
code without su�cient static type information can be run e�ciently
and without additional consing. �e other reason is that we would
have had to introduce static, immutable tuples into Common Lisp

36 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

and force every user of our reduction operator to use them, whereas
multiple values are already part of the language.

5 EXAMPLES
In the following section, we show how our reduction operator can
be used in practice.

5.1 Numeric Accumulation
In this �rst example, in �gure 5, we show how β can be used to
express the sum and product of some numbers. �is illustrates
also how some seeming de�ciencies like lack of an initial value can
be overcome with a suitable abstraction. In this case, we call this
abstraction β*. It correctly handles the case of receiving an empty
array, and, for further convenience, reduces the whole array if no
explicit axis is supplied.

(defun β* (f z x &optional axis)1

(cond ((empty-array-p x)2

z)3

((integerp axis)4

(β f (exchange-axes x 0 axis)))5

((loop until (zerop (rank x))6

do (setf x (β f x))7

finally (return x)))))8

9

(defun sum (x &optional axis)10

(β* #'+ 0 x axis))11

12

(defun product (x &optional axis)13

(β* #'* 1 x axis))14

Figure 5: Using β for numeric accumulation.

5.2 Computing the Maximum and its Index
In this second example, in �gure 6, we show how to perform a
reduction on multiple values. Our goal is to e�ciently obtain both
the maximum of a vector, and the corresponding index. To do so,
the function max*, supplies two arrays to β — the array itself, and
an array of the same shape containing the indices of the axis zero
corresponding to each array element. �ese two arrays are then
reduced with a four argument function that forwards either the two
le� arguments or the two right arguments, depending on which
side yields the larger value.

As discussed later in section 6, the function max* is probably
more e�cient than a programmer would assume by looking at its
de�nition. Not only can large parts of it be run in parallel, it is also
possible to completely eliminate the lazy array that is given as the
last argument to β, by computing its elements into a function of
the currently processed index.

6 IMPLEMENTATION
In �gure 7, we show a naı̈ve implementation of β. �e only user-
visible di�erence between this naı̈ve code and the one Petalisp

(defun max* (x)1

(β (lambda (lv li rv ri)2

(if (> lv rv)3

(values lv li)4

(values rv ri)))5

x (indices x 0)))6

Figure 6: Computing the maximum element and its index.

actually uses is that there is no implicit broadcasting of argument
arrays, no error handling, and no support for lazy arrays. But
what this code shows is that a naı̈ve implementation will always
be prohibitively slow. Neither the dimensions of the given arrays,
nor their rank, nor their element type are known at compile time.
Not even the number of arrays k is known statically. To tackle this
problem regardless, we have to make use of higher-order functions
and relatively expensive constructs like multiple-value-list and
(apply #’aref).

We see that the crucial question regarding an e�cient imple-
mentation of our proposed β operator is how to deal with the large
amount of compile time uncertainty. One possible approach would
be to write or generate multiple versions of the code for each possi-
ble invocation, e.g., using the technique of Strandh[3]. �e problem
is that in our case, the space of possible arguments and types is
extremely large. Assuming we wanted to create special versions
just for the case of reducing up to three arrays with a rank below 3
and for every specialized array element type. �en, assuming an
implementation with 20 specialized array types2, we would end up
with 2(201 + 202 + 203) = 16840 di�erent versions. Such an amount
of specialization is unreasonable, even on a modern computer with
plenty of memory.

What we do instead is that we generate specialized reduction
functions on demand, using the existing framework of Petalisp.
�is has multiple advantages:

• Data �ow analysis prevents unnecessary evaluation. If
parts of the result of a reduction are not used, the corre-
sponding inputs will also not be computed.

• If the inputs of a reduction are lazy arrays, the code that
computes the contents of these arrays can o�en be inlined
directly into the reduction, thus avoiding an unnecessary
intermediate array.

• Specialized code is cached e�ciently, such that future in-
vocations with a similar signature can reuse the previously
compiled code.

• �e programmable type inference engine of Petalisp can
o�en statically deduce the element type of the results of a
reduction and allocate them in a suitable specialized array.

• �e size of the argument arrays is known during code
generation. �is makes it possible to generate and use
di�erent variants, e.g., to avoid thread parallelization when
the workload is known to be small.

2Having 20 specialized array types is a conservative estimate. SBCL on a 64bit archi-
tecture recognizes 34 subtypes of array, CCL even 38.

ELS 2019 37

Lazy, parallel multiple value reductions in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

(defun β (f array &rest more-arrays)1

(let* ((arrays (list* array more-arrays))2

(k (length arrays))3

(r (array-dimension array 0))4

(dims (rest (array-dimensions array)))5

(results6

(loop repeat k7

collect (make-array dims))))8

(map-indices9

(lambda (indices)10

(mapcar11

(lambda (o v)12

(setf (apply #'aref o indices) v))13

results14

(multiple-value-list15

(labels16

((divide-and-conquer (start end)17

(if (= start end)18

(values-list19

(mapcar20

(lambda (a)21

(apply #'aref a22

(list* end indices)))23

arrays))24

(multiple-value-bind (ls le us ue)25

(split-range start end)26

(values-list27

(subseq28

(multiple-value-list29

(multiple-value-call f30

(divide-and-conquer ls le)31

(divide-and-conquer us ue)))32

0 k))))))33

(divide-and-conquer 0 (1- r))))))34

dims)35

(values-list results)))36

37

(defun split-range (start end)38

(let ((mid (floor (+ start end) 2)))39

(values start mid (1+ mid) end)))40

41

(defun map-indices (fn dims)42

(if (null dims)43

(funcall fn '())44

(apply #'alexandria:map-product45

(alexandria:compose fn #'list)46

(mapcar #'alexandria:iota dims))))47

Figure 7: A possible implementation of β.

In order to support the new reductions, we also had to make
several changes to the Petalisp internals. �e most challenging task
was to add support for functions returning multiple values. �is

change has profound implications, as it turns what used to be data-
�ow trees into directed acyclic data-�ow graphs, and because it
touches many optimization passes, such as common subexpression
elimination and hoisting of loop invariant code.

We are happy to report that this transition is now complete, and
that Petalisp now has full support for functions returning multiple
values. �ese changes a�ect not only reductions, but also parallel
mapping. It is now also possible to, e.g., map the function floor
over a single array to obtain one array with all the quotients and
one array with all the remainders.

To give a glimpse into the workings of our code generator, we
show in �gure 8 a part of the code generated during the �rst eval-
uation of a call to the function max* from �gure 6 on a vector.
�is snipped of generated code shows how the number of values
has been turned into a compile time constant, how the reference
to the second array has been reduced to (identity index) and
how the reference to the �rst array has been lowered to a call to
row-major-aref with a simple o�set.

...1

(labels2

((divide-and-conquer (min max)3

(declare (type fixnum min max))4

(if (= min max)5

(let ((index (+ min (* #:g3 #:g4))))6

(let* ((v (row-major-aref a0 index))7

(i (identity index)))8

(values v i)))9

(let ((mid (+ min (floor (- max min) 2))))10

(multiple-value-call11

(lambda (l0 l1 r0 r1)12

(multiple-value-bind (r0 r1)13

(funcall f l0 l1 r0 r1)14

(values r0 r1)))15

(divide-and-conquer min mid)16

(divide-and-conquer (1+ mid) max))))))17

(divide-and-conquer 0 (/ (- #:g5 #:g3) #:g4)))18

...19

Figure 8: An excerpt from the code generated for a call to
max*.

7 PERFORMANCE
We have not yet implemented all optimizations that we envision,
so it is too early for a detailed performance analysis. But we can
already outline the most important performance characteristics of
our technique. Our measurements show that for large vectors, our
operator is about half as fast as SBCL’S built-in function cl:reduce,
despite being vastly more general. �e downside of on-demand
code selection or generation is that it incurs a constant overhead
of several microseconds, making it unsuitable for reductions of
small arrays. However, we expect that we can lower this constant
overhead in the future by switching to more e�cient data structures
and by caching some expensive intermediary steps.

38 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

8 CONCLUSIONS AND FUTURE WORK
We have presented a reduction operator β that is simple, power-
ful and has plenty of inherent parallelism. Most importantly, our
reduction operator supports accumulation of multiple values at
once. �us, it greatly extends the range of programs that can be
expressed as a single reduction. e.g., for �nding both the minimum
and maximum of a sequence, or for accurate summation of �oating
point numbers, using a second value to accumulate errors.

We have carefully presented our design considerations, espe-
cially with respect to inherent parallelism and simplicity. �e value
of simplicity is still underappreciated in modern parallel program-
ming. We think that in order to obtain both correctness and speed,
it is sometimes be�er to go for clean, robust approaches — such
as reducing along a binary tree only — instead of chasing a�er the
last few percent of performance.

As a second contribution, we have presented an implementation
technique — on-demand compilation of specialized code at run time
— that allows us to turn this operator into e�cient, highly special-
ized code. To do so, we use the existing data-�ow analysis and
compiler infrastructure of Petalisp. All our code is freely available
under a copyle� license3.

�is paper marks the end of the design process of the parallel pro-
gramming library Petalisp. �is doesn’t mean we are �nished with
Petalisp development, but we will now focus exclusively on under-
the-hood improvements, such as be�er thread-level parallelization,
faster dispatch, SIMD vectorization and, ultimately, distributed
parallelization.

9 ACKNOWLEDGMENTS
We would like to thank all the people in the #petalisp IRC channel.

REFERENCES
[1] Guy E. Blelloch, Siddhartha Cha�erjee, Jonathan C. Hardwick, Jay Sipelstein,

and Marco Zagha. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[2] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:
10.1145/1327452.1327492. URL h�p://doi.acm.org/10.1145/1327452.1327492.

[3] Irène Durand and Robert Strandh. Fast, maintainable, and portable sequence
functions. In Proceedings of the 10th European Lisp Symposium, ELS2017. Euro-
pean Lisp Scienti�c Activities Association, 2017.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 3.1. High Performance Computing Center Stu�gart (HLRS), 2015. URL
h�ps://www.mpi-forum.org/docs/.

[5] Marco Heisig. Petalisp: A common lisp library for data parallel programming. In
Proceedings of the 11th European Lisp Symposium on European Lisp Symposium,
ELS2018, pages 1:4–1:11. European Lisp Scienti�c Activities Association, 2018.
ISBN 978-2-9557474-2-1.

[6] Marco Heisig and Harald Köstler. Petalisp: Run time code generation for oper-
ations on strided arrays. In Proceedings of the 5th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY
2018, pages 11–17, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5852-1.
doi: 10.1145/3219753.3219755. URL h�p://doi.acm.org/10.1145/3219753.3219755.

[7] Christophe Rhodes. User-extensible sequences in common lisp. In Proceedings
of the 2007 International Lisp Conference, ILC ’07, pages 13:1–13:14, New York,
NY, USA, 2009. ACM. ISBN 978-1-59593-618-9. doi: 10.1145/1622123.1622138.
URL h�p://doi.acm.org/10.1145/1622123.1622138.

[8] Olin Shivers. Sr�-1: List library, 1998. URL h�ps://sr�.schemers.org/sr�-1/sr�-1.
html.

[9] Guy L. Steele, Jr. Organizing functional code for parallel execution or, foldl
and foldr considered slightly harmful. SIGPLAN Not., 44(9):1–2, August 2009.
ISSN 0362-1340. doi: 10.1145/1631687.1596551. URL h�p://doi.acm.org/10.1145/
1631687.1596551.

3h�ps://github.com/marcoheisig/Petalisp

[10] Guy L. Steele, Jr. and W. Daniel Hillis. Connection machine lisp: Fine-grained
parallel symbolic processing. In Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, LFP ’86, pages 279–297, New York, NY, USA, 1986.
ACM. ISBN 0-89791-200-4. doi: 10.1145/319838.319870. URL h�p://doi.acm.org/
10.1145/319838.319870.

ELS 2019 39

40 ELS 2019

Session IV: Code as Data

Monday, 1.4.2019

16:00–16:30 Mikhail Raskin and Christoph Welzel: Working with first-order proofs and provers
16:30–17:00 António Leitão: Plagiarism Detection for Lisp
17:00–17:30 Lightning talks
19:00 Reception at Aula Magna

ELS 2019 41

Working with first-order proofs and provers

Michael Raskin
Christoph Welzel∗

Technical University of Munich
Garching bei München

raskin@mccme.ru,welzel@in.tum.de

ABSTRACT

Verifying software correctness has always been an impor-
tant and complicated task. Recently, formal proofs of critical
properties of algorithms and even implementations are becom-
ing practical. Currently, the most powerful automated proof
search tools use first-order logic while popular interactive
proof assistants use higher-order logic.

We present our work-in-progress set of tools that aim to
eventually provide a usable first-order logic computer-assisted
proof environment.

CCS CONCEPTS

• Software and its engineering → Constraint and logic
languages; • Theory of computation → Interactive proof
systems; Automated reasoning ;

KEYWORDS

automated reasoning, computer-aided proofs, first-order logic,
verification

ACM Reference Format:

Michael Raskin and Christoph Welzel. 2019. Working with first-

order proofs and provers. In Proceedings of the 12th European
Lisp Symposium (ELS’19). ACM, New York, NY, USA, 4 pages.

https://doi.org/10.5281/zenodo.2633990

1 INTRODUCTION

Complete formal verification of algorithms and their imple-
mentations is becoming more widely applicable. Probably
the most general approach is construction of formal proofs
in a chosen theory. Interactively constructed formal proofs
often use one of the popular higher order logics, such as Cal-
culus of Coinductive Constructions in case of Coq[10] or the
chosen higher-order logic of Isabelle/HOL[12]. At the same
time, a lot of progress in automated reasoning is achieved in
the field of first-order logic. For example, the Conference on
Automated Deduction (CADE) has an automated theorem

∗The project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 787367

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’19, April 01–02 2019, Genova, Italy

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2633990

prover (ATP) competition, called CADE ATP System Com-
petition (CASC)[4]. Satallax[13], the leading higher-order
ATP according to the CASC results[5], uses E prover[6] (one
of the leading first-order provers) for some tasks. On the
other hand, CoqHammer[11], a tool that aims to partially
automate interactive construction of proofs with Coq, also
uses translation into first-order logic and multiple first-order
automated provers.

We want to be able to verify statements about distributed
algorithms where direct application of generic ATP systems
might still be impractical. To that aim, we create first-order
specifications, and use domain knowledge to write or gener-
ate proofs as sequences of lemmas, while automated theo-
rem provers verify implications. As CASC competitions have
popularized the unified input format of the Thousands of
Problems for Theorem Provers (TPTP) collection[1], using
multiple ATP systems does not require any changes in the
proof format. To support this kind of exploration, we develop
supporting tooling for managing the specification, preparing
the list of lemmas, and interacting with the proof system.

While it is too early to draw any conclusions from our on-
going experiments with representing properties of distributed
systems in the first-order logic, we want to present the sup-
porting tooling used in this research.

2 OUR TOOLING

2.1 Data formats

All of our tooling uses TPTP for all the output and most
of the proof input. We use the SyntaxBNF file from the
TPTP distribution (Backus–Naur form of the TPTP format
definition) and translate it into Esrap[7] rules to parse the
format. It turns out that unambiguity of the official TPTP
BNF specification allows us to order the parsing rules in a
way compatible with packrat parsing[8]. More specifically, in
every alternation rule the first (after reordering) successful
option can be taken.

However, the formal specifications of the systems in ques-
tion contain large amounts of similar statements. These spec-
ifications are generated programmatically. Currently we do
not want to make lasting decisions about the structure of
the specifications we will work with, so the generating code
is written in Common Lisp and refactored according to the
current specification in question.

The proof itself contains additional definitions and lemmas,
and various instructions such as advice to prove some lemma
by case analysis (with a list of cases provided). We use TPTP
Process Instructions (TPI) extension[2] of the TPTP syntax

42 ELS 2019

Working with first-order proofs and provers ELS’19, April 01–02 2019, Genova, Italy

to encode the additional imperative instructions related to
lemma list processing.

2.2 Global workflow

First of all, we need to generate the axioms describing our
formal specification.

To validate that the axioms describe the intended model,
we generate a test run by evaluating the transition rules.
We have code that can evaluate a first-order formula on an
incomplete model, if the fixed part of the model is enough to
determine the formula value easily. The generated runs are
validated in two ways: by manual inspection, and by verifying
that an automated theorem prover given this run and the
full specification does not find a contradiction in reasonable
time.

At our current stage of exploration, the next step involves
writing a list of lemmas (and instructions for their preprocess-
ing) that should be sufficient to prove the desired condition.

The last step is verifying that a list of lemmas constitutes
a correct proof. Of course, in practice this step is performed
in parallel with the previous one. A part of verification is
performed, then the proof is updated to avoid the prob-
lems observed during verification attempt. The verification
attempts are usually started inside the part of the proof
currently of interest, and stop when some lemma cannot be
proved.

Even after the last step of proof verification our tooling
can offer some further support. We have some utilities for
analysing and visualising the output of an ATP system.

The system currently does not provide any dedicated user
interface. It can be used either from a Common Lisp REPL,
or via wrapper shell scripts invoking necessary operations.

2.3 Structure of an example model

The examples will be related to one possible encoding of the
Dijkstra’s mutual exclusion protocol[9] executed on a single
CPU with multiple time-sharing processes (as illustrated
in Algorithm 1). In general, this model has a set of agents
switching between states, and local variables. We automatise
a linearly ordered discrete time model which uses an initial
value initial and a function next moment(T) which “ad-
vances” the time one step. The state of agent A at moment
T is represented by the function value active state(T,A).
There are also some other per-agent variables (and a global
turn variable), modelled in the same way, e.g. counter(T,A)
which gives the value of the variable counter of agent A at
time T . For a single-CPU multi-process execution we can
assume that only one agent at a time can change its state or
variables, and denote this agent as active agent(T). We want
to avoid a situation where two agents execute the critical
section (i.e. have the active state equal to criticalSection
which represents line 17 in Algorithm 1) at the same time.

The safety-critical part of the Dijkstra’s mutual exclusion
protocol consists of an agent declaring its intent to enter the
critical section, and checking that no other agent has also
declared the same intention.

1 begin
2 Stealablei ←− false;

3 if turn ̸= i then
4 Outsidei ←− true;

5 if Stealableturn = true then
6 turn←− i;

7 end

8 go to 3;

9 end

10 else
11 Outsidei ←− false;

12 for counteri ←− 1 to n do
13 if counteri = i then continue;

14 if Outsidecounteri = false then go to 3;

15 end

16 end

17 <critical section>;

18 Outsidei ←− true;

19 Stealablei ←− true;

20 <remainder of cycle>;

21 go to 2;

22 end
Algorithm 1: Dijkstra’s algorithm for process i with n
parallel processes.

To avoid encoding a full theory with induction, one can
start with proving just the inductive step: define an invariant
then prove that this invariant at some moment implies the
same invariant at the next moment of time, and that the
invariant implies safety. The reason to delay encoding the full
proof by induction is that the most natural ways to encode
induction axiomatically require an infinite number of axioms.
This is often called “induction axiom schema” — for every
formula expressing a predicate, there is an axiom. This axiom
claims that proving the base case and the induction step for
the property in question is enough to verify the property for
all natural numbers.

2.4 Representation of the proof

In the TPTP format each statement is given a role; we parse
the list of statements and look at their roles. Axioms are
introduced in the specification, and can be used directly.

“Checked definitions” can be introduced in the proof; they
are axioms that introduce simple abbreviations, extending
the theory in a conservative way. We verify that they define
a single name in terms of previously seen names, and use
these definitions as axioms. For example, we can define the
safety condition.

fof(define_safety_for, checked_definition,

![T,A1,A2]: (safe_for(T,A1,A2)<=>(

(active_state(T,A1)=criticalSection

& active_state(T,A2)=criticalSection)

=> A1=A2))).

ELS 2019 43

ELS’19, April 01–02 2019, Genova, Italy M. Raskin, C. Welzel

Figure 1: Structure and proof-steps of our tool.

Axioms

“Checked definitions”

“Checked lemma”

“Checked lemma”

“Checked lemma”

1

2

3

...

This formula, which can be also rewritten in the usual nota-
tion as ∀T,A1, A2 : (safe for(T,A1, A2)⇔ ((state(T,A1) =
state(T,A2) = criticalSection) ⇒ A1 = A2)), says that a
moment T is safe for a pair of agents A1 and A2 if either
at least one of the agents is out of the critical section or
they actually are the same agent. This reflects a part of the
desired property that two different agents should not execute
the critical section simultaneously. The full safety condition
is defined by requiring this property to hold for each pair of
agents.

“Checked lemmas” constitute the main part of the proof.
Every such lemma is first given to an automated prover as a
conjecture to prove, using the axioms and previous lemmas.
If the prover reports a success, the lemma can be used as an
axiom during the following steps. These steps are illustrated
in Figure 1.

For example, the following lemma is proved as a part of a
case by case analysis.

fof(safety_conditions_local_cases, checked_lemma,

![T,A,B]:(~passed(T,A,B)

| (passed(T,A,B) & ~passed(T,B,A))

| (passed(T,A,B) & passed(T,B,A)))).

This lemma uses the predicate passed, that is defined to
mean that agent A has declared its intent to enter the critical
section and has already checked that agent B had not declared
such at intent at the time of the check. The lemma itself is
trivial, claiming only that at any given moment either A has
not yet passed B, or A has passed B but B has not passed
A, or both agents have passed each other.

We also support defining a limited set of axioms (and/or
previously proved lemmas) to use when proving a specific
lemma. This reduces the proof search space and therefore
drastically improves the performance. There are cases where
specifying the proof dependencies manually is easy; in addi-
tion, our lemma generation strategies include generation of
such dependency hints where appropriate.

2.5 Additional proof-handling capabilities

We use TPI (TPTP Process Instructions) to specify oper-
ations on lemmas inside the proof. To improve interactive
usability, we allow a special declaration that declares valid all
the checked lemmas earlier in the proof. This can be conve-
nient to skip a part of the proof that has already been verified
earlier, or just to focus on a step in the middle of the proof
before spending time on a possible unsuitable beginning.

In many cases, lemmas needed to achieve good performance
of the proof search are predictable. Some of the techniques
described in [3] are broadly applicable, especially proving
all the components of each conjunction separately. Another
important source of lemmas is case-by-case analysis, which
requires choosing the cases but becomes a purely mechanical
task afterwards.

For example, consider the following case. The lemma under
consideration claims that if it is impossible for two agents
to have passed each other, and two agents are distinct, and
reaching the critical section requires passing all the other
agents, then the two agents cannot both be in the critical
section. It is easier to prove the conclusion if we know whether
some agent hasn’t passed the other one (in which case we
can say it has not reached the critical section), or both
agents have passed each other (in which case we obtain a
contradiction with impossibility of mutual passing). So we
prove exhaustiveness of a list of possible situations, and prove
the lemma in each of them before proving it in the general
case.

fof(safety_conditions_local_cases, checked_lemma,

![T,A,B]:(~passed(T,A,B)

| (passed(T,A,B) & ~passed(T,B,A))

| (passed(T,A,B) & passed(T,B,A)))).

fof(safety_conditions_local_simplified,

checked_lemma,

![T,A,B]:

((passed_exclusive_for(T,A,B) & A!=B

& passed_in_critical_for(T,A)

& passed_in_critical_for(T,B)) =>

(active_state(T,A)!=criticalSection

| active_state(T,B)!=criticalSection))).

tpi(ca_safety_conditions_local, add_cases,

safety_conditions_local_cases =>

safety_conditions_local_simplified).

It will be checked that the case enumeration is exhaustive,
and then the main lemma will be checked with each of the
cases added as an additional assumptions, e.g.

fof(ca_safety_conditions_local_simplified_case_...,

checked_lemma,

![T,A,B]:

((passed_exclusive_for(T,A,B) & A!=B

& passed_in_critical_for(T,A)

& passed_in_critical_for(T,B)

& ~passed(T,A,B)) =>

(active_state(T,A)!=criticalSection

44 ELS 2019

Working with first-order proofs and provers ELS’19, April 01–02 2019, Genova, Italy

| active_state(T,B)!=criticalSection))).

One more tool which sometimes unexpectedly turns out
to be useful is definition expansion. We have an instruction
that expands specified definitions in a given formula. It turns
out that there are formulas that are simpler for existing
provers if some definitions are expanded. Implementation of
this functionality translates the definitions to expand into
code performing the expansion and uses the run-time code
evaluation and compilation capabilities provided by Common
Lisp to run this code.

2.6 Processing the prover output

We have some tools for processing the output of automated
theorem provers. If a prover has produced a proof in the
TPTP format, it can be translated into Graphviz (an au-
tomated graph layout tool) or VUE (Visual Understanding
Environment, a GUI tool which includes functionality con-
venient for working with some types of graphs) format for
visualization, Visualization is supported both for the details
of an individual lemma proof, and for an overview of the
global lemma dependence.

We also have a tool for detection of unused lemmas. Unfor-
tunately, sometimes removing unused lemmas from a proof
makes the task much harder for some of the provers. The
most likely reason for that is that even eventually unused
axioms affect the prioritization of possible directions of proof
search.

2.7 Parallel processing considerations

Following the naive interpretation of upstream TPI semantics,
the operations on proofs are defined in imperative terms and
operate on the entire proof. This currently limits the opportu-
nities for parallel execution of the lemma-preprocessing code.
On the other hand, invoking external ATP systems provides
an isolated task to each prover instance, and to aggregate the
results we just need to check that every instance has printed
a line signalling successful proof. We currently work with
proofs in an interactive mode, observing the proof verification
progress step by step. To verify non-interactively a complete
generated proof our tooling allows to export all the prover
tasks, so that the prover invocations can be scheduled in any
desired way (possibly with multiple computers involved in
processing). We do not use this mode of operation yet.

3 CONCLUSION

We present a set of proof-manipulation tools that already
implements quite a few useful operations and will further
grow in parallel with the research they support.

We currently use the tool set described in the present paper
to explore the performance implications of using different rep-
resentations and using different provers for distributed algo-
rithms. For example, we have encoded the inductive step proof
for safety of Dijkstra’s mutual exclusion algorithm. We plan
to develop the capabilities further, supporting both computer-
assisted proof construction and providing an intermediate

representation for automated verification via proof genera-
tion. We hope that the approach and some parts of our code
might be of use to others. A mirror of the code is available
at https://gitlab.common-lisp.net/mraskin/gen-fof-proof/.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their comments and suggestions about presentation.

REFERENCES
[1] Geoff Sutcliffe. The TPTP Problem Library and Associated Infras-

tructure. From CNF to TH0, TPTP v6.4.0 Journal of Automated
Reasoning, 2017, vol. 59, № 4, pp. 483–502.

[2] Geoff Sutcliffe. The TPTP Process Instruction (TPI) Language.
Retrieved on 18 March 2019. http://tptp.cs.miami.edu/∼tptp/
TPTP/Proposals/TPILanguage.html

[3] Ewen Denney, Bernd Fischer, Johann Schumann. Using Auto-
mated Theorem Provers to Certify Auto-generated Aerospace
Software. International Joint Conference on Automated Reason-
ing 2004.

[4] Geoff Sutcliffe. The CADE ATP System Competition - CASC. AI
Magazine, 2016, vol. 37, № 2, pp. 99–101.

[5] The CADE ATP System Competition — The World Champi-
onship for Automated Theorem Proving, homepage. Retrieved on
18 March 2019. http://tptp.cs.miami.edu/∼tptp/CASC/

[6] Stephan Schulz. System Description: E 1.8. Proc. of the 19th
LPAR, Stellenbosch, 2013, pp. 735-743.

[7] Esrap project homepage. Retrieved on 28 January 2019. http:
//nikodemus.github.com/esrap/

[8] Bryan Ford, Packrat Parsing: a Practical Linear Time Algorithm
with Backtracking. 2002. Retrieved on 28 January 2019. http:
//pdos.csail.mit.edu/∼baford/packrat/thesis/

[9] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM 8, 9 (September 1965).

[10] Coq Development Team. The Coq Proof Assistant Reference
Manual, version 8.7. Retrieved on 27 January 2019. http://coq.
inria.fr

[11] L. Czajka and C. Kaliszyk. Hammer for Coq: Automation for
Dependent Type Theory. Journal of Automated Reasoning, 2018,
vol. 61, issue 1–4, pp. 423–453. http://cl-informatik.uibk.ac.at/
cek/coqhammer/coqhammer.pdf

[12] Tobias Nipkow, Lawrence C Paulson, Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic Lecture
Notes in Computer Science (2002).

[13] Chad E. Brown. Satallax: An Automatic Higher-Order Prover
[14] Graphviz project homepage. Retrieved on 18 March 2019. https:

//graphviz.org/
[15] Visual Understanding Environment project homepage. Retrieved

on 18 March 2019. https://vue.tufts.edu/

ELS 2019 45

Plagiarism Detection for Lisp
António Menezes Leitão

antonio.menezes.leitao@tecnico.ulisboa.pt
INESC-ID/Instituto Superior Técnico, University of Lisbon

Lisboa, Portugal

ABSTRACT
Computers made it very easy to copy someone else’s work. This
makes grading a difficult task, as the teacher that wants to prevent
plagiarism needs to compare each student’s assignment against
every other student’s assignment, a quadratic process that is im-
practical when the number of assignments gets large. Students
know this and some take advantage of it. To be able to detect pla-
giarism among students’ programming assignment we created a
software tool that checks all assignments against each other, search-
ing for copied fragments. Unlike many other tools, this search is
not based on textual comparisons or hashing functions but, instead,
on collecting pieces of evidence for and against a plagiarism verdict.
This collection is determined by specialized procedures, invoked in
a data-driven fashion, that incorporate expert knowledge regard-
ing what is plagiarism and what is not plagiarism. The tool has
been successfully used since 1995 in the evaluation of assignments
programmed in Lisp dialects, particularly, Common Lisp, Scheme,
Racket, and AutoLisp, and its mere existence became a deterrent
for plagiarism.
ACM Reference Format:
António Menezes Leitão. 2019. Plagiarism Detection for Lisp. In Proceedings
of the 12th European Lisp Symposium (ELS’19). ACM, New York, NY, USA,
8 pages.

1 INTRODUCTION
Nowadays, every student uses a computer to accomplish his assign-
ments. Unfortunately, the computer also makes it very easy to copy
and share students’ work. The computer even helps in camouflag-
ing the copied parts so that the teacher does not easily detect them.
This situation is called plagiarism [15] and it is based on making
a series of systematic changes to a program to create a derivative
work that is syntactically different but semantically identical. The
problem is especially serious in Computer Science courses, where
evaluation typically includes the development of software projects.
In this case, it is very easy to make copies that, at first sight, look
very different from the original. Besides, when the assignments to
be graded are divided among teachers, it is almost impossible to
detect the copies.

In this paper, we discuss a set of techniques for the detection
of copies in students’ projects and we present a software tool that
implements those techniques for Lisp-based projects. The tool was

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.

evaluated in real cases of projects developed using Common Lisp,
Scheme, Racket, and AutoLisp and the results confirm its ability
to detect plagiarism, even when the projects suffered considerable
changes in order to hide their non-originality.

In the next section, we discuss the detection of plagiarism. In
the following sections, we present an approach for its automation
and specific details of its implementation in a plagiarism-detection
tool. In the Results section, we evaluate its use in a real case. The
final section summarizes the work and compares it with other
approaches.

2 DETECTING PLAGIARISM
The intent of a plagiarized work is to obtain a grade without being
associated with the original work from which it was derived. This
implies that a carefully plagiarized work presents sufficient differ-
ences from the original that the teacher cannot easily correlate
them. Unfortunately, seldom there is time to make a really good
plagiarized work and some traces of the original remain in the
copy. This is particularly true in software, where the copy needs to
preserve the semantics of the original algorithms. In this case, the
copier can change some particular parts of the original but many
other parts such as the global structure, the control structures, the
recursive or iterative nature of some functions, or the primitive
operations used, remain as traces of the original. It is these traces
that help identify plagiarism.

We now describe the principles behind the proposed plagiarism
detection tool. The tool is intended to detect plagiarism between
programs written in Lisp dialects, namely, Common Lisp, Scheme,
Racket, and AutoLisp. In all of these languages, a program can be
subdivided into smaller and relatively independent parts. Depend-
ing on the particular programming language, these parts are named
classes, functions, procedures, structures, methods, etc. In most high-
level languages, and even more so, in Lisp dialects, there are few
limitations upon the textual form of the code and so it is possible
to interchange parts of the program as well as change its textual
indentation without affecting its behavior. Additionally, the pro-
gram is, to a large extent, independent of the particular names
used to describe it. This means that two programs may be textually
different but semantically identical.

Usually, the visual detection of copies in programs is based exclu-
sively on its textual form. Students know this, and take advantage
of it. By using all the possibilities described above, they can mod-
ify the textual form of a program is such convoluted ways that it
no longer resembles the original. If they have enough care not to
change the semantics of the original, the copy will accomplish the
same task. This suggests that the detection of copies should not be
based on the textual form of the programs but on its semantics.

Given that programs are composed by subprograms, and there is
no order between the subprograms, in order to identify plagiarism

46 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy António Menezes Leitão

in two programs we have to compare all the subprograms in one
program against all the subprograms in the other program. If these
subprograms are basic units, i.e., they do not contain any subpro-
grams, then they can be compared in terms of the control structures
they use, the primitive operations upon which they depend, etc.
If both subprograms start by using an if control structure, most
people would agree that this, by itself, is not a verdict of plagiarism,
but it can be considered as a very small piece of evidence. In order
to collect more pieces of evidence, we check the test form of the
control structure. If in both cases this form is the application of the
very same primitive function then we increase our confidence that
we are facing plagiarism, otherwise, we decrease it. Then, we look
at the consequent of the control structure and we apply similar
reasoning. If, for example, in both consequents the program exe-
cute a loop until some criterion is fulfilled, this is another piece of
evidence. We proceed by comparing the termination criteria of both
loops, as well as the body of the loops. In case the forms in both sub-
programs do not match, we search for some of the common tricks
students use to transform one into the other, such as swapping
arguments in commutative operations. This process proceeds until
we exhaust both subprograms. In the end, we decide whether we
collected enough evidence to signal the subprograms as suspicious.

The process just described is commonly done by teachers that
grade students’ projects. However, they tend to do it only if they
already suspect that there was some cheating, which makes the
process unfair, as some are detected and others are not. Moreover,
the process does not scale, either in the amount of information
that teachers can collect, or in the number of comparisons be-
tween projects that they can do. In this paper, we address these two
problems, presenting a tool built specifically to detect plagiarism
between Lisp-based student projects.

3 AUTOMATIC PLAGIARISM DETECTION
We now describe an approach and a tool for automatic detection
of plagiarism in Lisp-based projects. We will use projects written
in the Common Lisp language [22] as an example but the tool is
configurable to operate with other Lisp dialects and, with some
extra effort, with other non-Lisp languages.

The tool is, essentially, a function which accepts two programs
as arguments and returns a similarity value. This value abstracts
away the particular similarities between the compared programs
and is related to the level of confidence that we have in a verdict of
plagiarism.

The tool can be decomposed into four main components:

• A parser that builds a syntax tree describing the programs
to compare. This allows us to forget the textual form of the
programs.
• A collection of specialized compare functions, each one de-

signed to analyze particular features of the code that is being
compared and to compute its similarity value.
• A data-driven matcher that identifies particular pieces of

code within the programs to compare and selects the spe-
cialized compare functions appropriate to those particular
pieces of code. This way, the tool can be easily extended or
adapted to work with other languages.

• A combination function that combines all the similarity val-
ues found by the previous modules into a global value.

The parser is the easiest part of the tool because there are al-
ready some available for most high-level languages. In fact, for the
Common Lisp language we just use the plain read function.

After parsing the two programs to compare, we feed the syntax
trees found into the compare function. Since we may have one
specialized compare function for comparing if forms, and another
specialized compare function for comparing iteration forms, and
so on, the top-level compare function will then check which one of
the specialized compare functions is appropriate to analyze the two
programs. To this end, each specialized compare function includes
two patterns, each one matching one particular form on each of
the compared programs. When the patterns match, the specialized
compare function uses pattern variables to access the sub-forms of
the programs and recursively compares those sub-forms using the
top-level compare function until we reach atomic pieces of code.

In each recursive step, we collect pieces of evidence suggesting
that we are facing copied programs. These pieces of evidence have
a numeric value which may be larger or smaller depending on their
importance. As an example, if both compared programs use a rarely
used primitive, this is higher evidence of plagiarism than if both
use a more frequent operation.

Since the number of forms to compare is quite large and there
may be a large number of specialized compare functions to choose
from, it is important that each of the operations involved—selecting
the compare function, matching its patterns, and combining the
amount of evidence found—executes quickly. We now analyze each
of these operations.

3.1 Evidence
During the compare process we collect pieces of evidence for and
against a verdict of plagiarism. For instance, it is unlikely that a
Lisp function that starts with an if special form can be considered
a copy of another that starts with the primitive function car. It is
the combination of all collected evidence—for and against—that
leads to the final verdict.

Expressing and combining evidence is a problem that has already
been treated by [20], in the context of diagnosing medical problems.
In this area, almost nothing is certain and doctors can only gather
evidence for diseases based on the patient’s symptoms. For instance,
if I have a headache, I may have got a cold, but it is also possible
that I have one or more of many other diseases such as cancer,
meningitis, etc. To identify the correct disease, doctors collect and
combine other pieces of evidence, like my body temperature, or the
fact that I sneeze or not.

In our case, we are only interested in determining if the plagia-
rism “disease” is present and there are pieces of positive evidence
and pieces of negative evidence for this possibility. For instance,
when comparing two functions, an equal number of parameters
constitutes a (small but) positive piece of evidence that they are a
copy of each other, while a different number of parameters consti-
tutes a negative one. Following the work of [20], we define evidence
as a number in the interval [−1, 1]. A value in this interval repre-
sents the amount of evidence that we have about something and
is called certainty factor. A certainty factor of 1 means absolute

ELS 2019 47

Plagiarism Detection for Lisp ELS’19, April 01–02 2019, Genova, Italy

certainty that it is true, −1 means absolute certainty that it is false,
and 0 means that we have nothing for or against—we simply do
not know.

To combine evidence, we cannot simply add them, as we need to
maintain the combined evidence within the interval [−1, 1]. Again,
we refer to [20] to justify the following combination function C:

C(x ,y) =

x + y − xy if x > 0 and y > 0,
x + y + xy if x < 0 and y < 0,

x+y
1−min(|x |, |y |) otherwise.

The parameters of the function are two certainty factors that we
want to combine. The function combines then in such a way that
combining true with something else except false is true, combining
false with something else except true is false, combining unknown
with something else does not change the result and combining true
with false is an error as it would be equivalent to a contradiction.
When two pieces of evidence are for something, that is, they are
both positive, its combination is stronger evidence for that thing.
When two pieces of evidence are against something, that is, they
are both negative, its combination is stronger evidence against that
thing. When one of them is positive and the other is negative, its
combination will be something in between.

Although certainty factors have well-known problems regarding
the dependency of evidence, the distinction between conflict and
ignorance, and the undefined semantics of the certainty factor
itself, they are simpler and computationally more tractable than
other approaches such as probability theory [16], Dempster-Schafer
theory [6], or fuzzy set theory [4].

As an example of the use of certainty factors in our tool, we
now present the evidence defined for the specific situation of a Lisp
conditional: the cond macro without a default clause.
(defevidence both-conds-miss-default 0.5 -0.3)

In the previous example, associated with the name of the evi-
dence there are two values, one for the evidence in favor of pla-
giarism, and the other for the evidence against plagiarism. In this
particular example, these evidences are relatively large because a
cond without a default clause is a rare situation. When it occurs in
the same place in two programs, it is a strong indicator of plagia-
rism. When it occurs in one program and not in the other, it is a
medium indicator against plagiarism.

3.2 Defining Compare Functions
To be able to accurately compare Lisp forms, we must specify differ-
ent comparing functions for different combinations of Lisp forms.
In this section, we deal with the problem of specifying the form of
Lisp forms.

Our idea is to use an association between patterns describing
Lisp forms and expressions computing the evidence of a copy be-
tween those Lisp forms. The patterns will be matched against some
form and, when successful, pattern variables will be bound to se-
lected elements in the form. Then, the sub-forms designated by the
pattern variables are compared and the pieces of evidence found
are combined.

As an example of a specialized compare function, consider the
situation where we have one if special form on each compared
program:

(defcompare ((if ?test1 ?conseq1 ?altern1)
(if ?test2 ?conseq2 ?altern2))

(combine-evidence
(get-evidence both-ifs t)
(compare ?test1 ?test2))
(compare ?conseq1 ?conseq2)
(compare ?altern1 ?altern2))

The macro defcompare uses the common practice of tagging
pattern variables with a leading question mark to distinguish them
from other literal symbols. Note also that the body of the specialized
compare function calls the generic compare function to compute
the evidence for copy of the test, consequent, and alternative of both
ifs and combine the returned values with the specific evidence of
having two ifs on both programs.

Unfortunately, the previous comparison is too strict and does
not search for additional signs of plagiarism. To that end, the actual
comparison function is the following:
(defcompare ((if ?test1 ?conseq1 . ?altern1)

(if ?test2 ?conseq2 . ?altern2))
(combine-evidence
(get-evidence both-ifs t)
(compare-if-args ?test1 ?test2

?conseq1 ?conseq2
(if ?altern1 (first ?altern1) nil)
(if ?altern2 (first ?altern2) nil))

(get-evidence both-ifs-as-whens
(and (null ?altern1) (null ?altern2)))))

(defun compare-if-args
(test1 test2 conseq1 conseq2 altern1 altern2)

(max (combine-evidence
(compare test1 test2)
(compare conseq1 conseq2)
(compare altern1 altern2))
(combine-evidence
(compare test1 `(not ,test2))
(compare conseq1 altern2)
(compare altern1 conseq2))))

Note that, besides recognizing the case where the if is being used
as a when, this improved comparison also verifies if the consequent
and alternative might have been swapped.

The comparison function is opportunistically called with two
forms and it will then try to match its patterns against those forms
and, in case of success, bind the variables to the correspondent
matched sub-forms. In case one of the patterns does not match, the
function immediately returns with a null result.

Usually, the result of a successful match is a substitution list
where pattern variables get their bindings. Unfortunately, there are
two problems with this solution:

• The match is expensive. The result of the match is a structure
that consumes time and space (that becomes garbage very
soon). As the match is a fundamental operation there should
be a minimum of garbage involved.
• There isn’t a direct connection between the bindings found

by the match process and the free variables in the compare
function body.

Both problems can be solved if we take into account that the
patterns are known at compile time. Thus, there is no need to

48 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy António Menezes Leitão

depend upon a generic match algorithm. We can optimize every
match process because we know in advance what it must do.

3.3 Partial Evaluation
The kind of optimization that we are talking about is named partial
evaluation and is a technique that aims at speeding up a program
by specializing it on some of its inputs.

In generic terms, if we have a program F that expects an input
i , we define the execution of that program as the result of F (i).
Now, let us consider that the input i can be split into two parts, one
static—known in advance—and the other dynamic. Let us write the
execution of our program on these inputs as F (s,d) where s and
d are the static and the dynamic parts of the input i , respectively.
Since we know the static part of the input, it may be possible to
rewrite the program F so that all computations that depend upon
the static part of the input are already done, that is, we want to
write a new program Fs such that F (s,d) = Fs (d).

The program Fs (d) is named the residual program for F with
respect to s or, equivalently, a version of F specialized to s .

A partial evaluator is a program that specializes other programs
with respect to some static input. Historically, a partial evaluator is
known as mix (after [9]). A partial evaluator is, then, a program mix
such that for every program F and static input s , mix(F , s) = Fs .

In our case, the program F is the match algorithm, and the static
input s which we want to use to specialize the program is the
known pattern. The result of the partial evaluation is a specialized
function that no longer receives the pattern but is capable of implic-
itly matching it. To do this, we write a partial evaluator mixmatch
already specialized on the match program. We then use mixmatch
on some pattern to produce a specialized matcher for that pattern:
mixmatch(s) = matchs

Although there are already many partial evaluators available
(for example [10], [17], and [19]), we decided to build our own. This
decision was made because our patterns are quite simple, allowing
a specialized partial evaluator to generate very fast code. Besides,
our partial evaluator generates code which is integrated with the
evaluation of evidence. The result of our partial evaluation of a
compare function is another function that interleaves the matching
and binding processes until all patterns are matched, and then
evaluates the compare function body in the lexical environment
established by the binding process.

3.4 A Data-Driven Approach
Since there are many kinds of Lisp forms, we also have many spe-
cialized compare functions. These functions must be invoked by a
generic compare function when and only when they are needed.
Since we want to be able to add more specialized compare functions
in the future, we need some way of doing it without disturbing
the rest of the compare functions. The data-driven programming
methodology [13] is an appropriate solution.

In a data-driven approach to our compare problem, we keep
all specific compare functions on a database. This database is dy-
namic in the sense that new specific compare functions can be
added at any time, even during the compare process. The generic
compare function will use this database to identify the specific
compare function appropriate for each situation. In many cases,

there will be more than one specific compare function matching
a particular situation. For example, if we consider the Lisp expres-
sion (+ 1 2), we can easily build patterns that match it, such as
(+ 1 ?arg), (+ ?arg1 ?arg2), (?f ?arg1 ?arg2), (?f . ?args),
(?car . ?cdr), or simply ?expr. All these patterns may coexist
in our system because they have different purposes: (+ 1 ?arg)
matches an increment operation, (+ ?arg1 ?arg2) matches a sum
operation, (?f ?arg1 ?arg2) matches a two-argument function
application, (?f . ?args) matches a general function application,
and so on. To decide which compare function should be used, there
must be an order between all the patterns. This order is needed to
ensure that more specific compare functions are tested before more
generic compare functions.

There are two perspectives regarding this order:
• Automatic-based: If we can compute the specificity of a pat-

tern, we can use it to sort the compare functions so that more
specific patterns are tried before less specific patterns.
• Manual-based: Since text files are sequential, there is a se-

quential order in the compare function definitions. We can
arrange our definitions so that their relative position reflects
our intended matching order.

The first approach is similar to what is used in CLOS—The Com-
mon Lisp Object System [11, 22], where multi-methods can be
specialized on the type of all arguments. These types have a sub-
type relation between them that must be taken into account when
dispatching a generic function. In our case, we have patterns with
different degrees of specificity and we also have multi-patterns,
thus being comparable to CLOS. The problem with this approach is
that it is not always obvious which patterns are more specific and
thus, we might end up with the wrong order.

Depending exclusively on the second approach is also somewhat
problematic. Whenever we want to add some new patterns, we
need to carefully choose where to define them. If we define them
after more generic patterns, the new patterns will never be checked.
If we define them before more specific patterns, the older patterns
will never be checked.

Our solution to the problem is a mixed approach. We will re-
tain the flexibility of the CLOS approach while depending on the
definition order in situations where a generic dispatch would be
ambiguous. The idea is to define a subsumption relation between
patterns, and use that relation to order the patterns. Whenever the
subsumption relation cannot decide which pattern is more specific,
we use the definition order. This approach follows the program-
mer’s intention except when his intention leads to wrong results.

3.5 Indexing
When the number of compare functions is large, checking the
patterns of all compare functions until one of them succeeds is very
time-consuming. Besides, this time grows as we add more compare
functions. To solve this problem, when patterns contain literals, they
are used as indexes in an hash-table of compare functions. Since
each compare function specifies two patterns, we have a doubly-
indexed hash-table. On each entry of the hash-table, we keep all the
compare functions whose patterns begin with the correspondent
keys, sorted by the specificity of the rest of both patterns. This
allows a very fast search of the appropriate compare function in

ELS 2019 49

Plagiarism Detection for Lisp ELS’19, April 01–02 2019, Genova, Italy

most cases. In other cases, the indexing mechanism restricts the
subset of applicable compare functions to just two or three, which
is still quite good.

It is important to note that the indexing mechanism is itself
implemented by a specialized compare function. This function has
a parameter list which matches all patterns that can be indexed.
When the match succeeds, the function uses the literals found to
get the appropriate compare functions. This allows the indexing
mechanism to be included in the system without modifying it. This
is useful because different programming languages may require
different indexing mechanisms and we can have several indexing
mechanisms at the same time.

With this technique, our generic compare function needs only
to check each specialized compare function in turn, according to
the subsumption relation between the patterns of those functions.
Some of these specialized compare functions are in fact indexing
functions which speed up the selection of the appropriate compare
functions. In case they are not applicable, the process continues,
checking another function, being it a real compare function or
just another indexing function. Obviously, it is possible to have
indexing functions within indexing functions without limit. An
indexing function can thus be seen as an abstraction of several
compare functions.

4 COMPARING PROJECTS
The previous sections described the techniques that we developed
for a generic compare process. We now describe some of the specific
enhancements that specialize the process for the Lisp language.

4.1 Comparing Project Structure
Let us suppose we are comparing the following Lisp project:
(defun a (x y)
(b x)
(c y))

(defun b (z)
(c z))

(defun c (z)
z)

and the following copy:
(defun b1 (z1)
(c1 z1))

(defun a1 (x1 y1)
(b1 x1)
(c1 y1))

(defun c1 (z1)
z1)

The functions a, a1, b, b1, c, and c1 are so small that they can
hardly be considered copies. Nevertheless, there are obvious resem-
blances between the two projects, as they share the same structure.
In the previous example, a calls b and c while a1 calls b1 and c1.

In order to compare the projects’ structures, a possible solution
would be to generate the callers/callees graph of both projects and
compare them with a graph comparing algorithm. However, there
is a simpler solution: whenever we find functions applications, we
check their definitions just as we are checking the current ones.

Using the previous example, while comparing a and a1 we find
that they call, respectively b and b1. Then, we compare b and b1

just to find that they call c and c1. Again, we compare c and c1. The
result of the comparison is then returned and combined with the
comparison of b and b1, and the result is returned and combined
with the comparison of a and a1. This way, functions near the root
of the graph will see its comparison getting more and more precise
as each called function is compared.

This process also takes into account self-recursive and mutually-
recursive functions. When in presence of such cases, we stop the
check (avoiding infinite regression) and we return with a value
reflecting that additional piece of evidence.

4.2 Comparing Lisp Forms
As we said before, when we compare two Lisp forms we first try to
use specialized compare functions for those forms. The following
list is just a short extract of some cases that the specialized compare
functions deal with:

• To compare two functions, we check their names, their ar-
guments lists, their documentation strings, and their bodies.
• Common transformations involving let forms consist of

exchanging some bindings, and replace let with let* and
vice-versa. This forces us to compare let forms, let* forms,
and combinations of them.
• Another common transformation consists of cascading lets.

Instead of using a single let to establish bindings, it is possi-
ble to use a large number of lets, each one establishing some
of the bindings. Although the result is semantically similar,
syntactically it looks very different. To avoid this trick, we
collect all subsequent lets. Although we may be changing
the semantics of the form, the change is not relevant to the
compare process.
• While comparing bindings, we must be careful about un-

usual bindings. Although the usual let form is similar to
(let ((var val)) body), it is possible to have uninitialized
bindings, such as (let ((var)) body), or unique uninitial-
ized binding such as (let (var) body).
• When comparing ifs, we give special attention to the excep-

tional cases of ifs without alternative because they are rare.
In this case, the ifs look like whens.
• When an if is copied, most students are smart enough to

modify it by negating the test and swapping the consequent
with the alternative. To deal with this case, we must also
compare the possible transformation. We return the highest
value found.
• Since the macro cond is very common, it is difficult to depend

on it to detect copies. For this reason, we just dispatch on
the tests and actions. However, we do analyze the default
clause because its absence is a rare situation. If two cond
forms both miss the default clause, that is a strong sign that
they may have been copied.
• One of the common copying practices is replacing a cond by

an if and vice-versa. To handle this case, we compare the
first cond clause with the condition and consequent of the
if and we compare a new cond containing the remaining
clauses with the alternative of the if. This approach allows
the comparison of a multi-clause cond with a cascade of if
forms.

50 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy António Menezes Leitão

• Transforming between an if and when is another common
plagiarism technique. The only tricky situations are (1) that a
when with multiple consequents implies an if with a progn
consequent and (2) that the if should not have an alternative
or it should be nil.
• Another common transformation is between if and unless.

As with the if and when comparison, the only tricky sit-
uations are (1) that an unless with multiple consequents
implies an if with a progn consequent and (2) that the if
should not have an alternative or it should be nil. Besides,
the if must have a negated test or have the consequent
swapped with the alternative.
• Substituting a dotimes with a do and vice-versa are also

good approaches to hide plagiarism. To detect these situa-
tions, we compare the corresponding parts, also including
the dotimes macro-generated ones (namely, stopping con-
dition for the loop and increment expression).
• Comparing setqs and setfs needs to take into account that

each variable must have its value, but the order between
variable-value pairs can be exchanged (to a certain extent).

4.3 Comparing Transformations
We have already exposed some of the common copying techniques
explored by students. Some of these techniques are sufficiently
general to be easily formalized. On this set, we include changing
parameter names, permuting function arguments, and cascading
let bindings.

However, there is another set of techniques that are much more
elaborated and involve more knowledge about Lisp functions. Trans-
forming (1+ expr) into (+ expr 1) is an example. They are seman-
tically equivalent expressions and either can be used. Since they
are syntactically different, they make copy detection a harder task.
There are much more examples, for instance, (null expr) and
(not expr).

Different Lisp functions that perform very similar operations in
most contexts are another source of problems. The functions car
and first are equivalent and either can be used. The functions
endp and null have similar semantics and in most situations either
can be used.

We extended our tool with some syntactic sugar to make it easy
to define new compare functions to recognize such equivalent forms.
Below we present some of the defined transformations.
(1+ ?x) ≡ (+ ?x 1)
(1- ?x) ≡ (- ?x 1)
(< ?x ?y) ≡ (>= ?y ?x)
(> ?x ?y) ≡ (<= ?y ?x)
(null ?x) ≡ (eql ?x nil)
(zerop ?x) ≡ (= ?x 0)
(car ?x) ≡ (first ?x)
(cdr ?x) ≡ (rest ?x)
(null ?x) ≡ (endp ?x)
(= (length ?list) 1) ≡ (endp (rest ?list))
(not (null ?list)) ≡ ?list
(cons ?elem nil) ≡ (list ?elem)

As is visible, we describe the equivalences using repeated pat-
tern variables in both patterns. Usually, when a pattern variable
is repeated on two patterns, it means that for them to match, the

variables’ values must be equal. Here, it just means that we should
compare the values on each matched form. When we enter the
equivalent forms into the system, all pattern variables are renamed
and then two new compare functions with permuted arguments
are defined so that both transformations can be tried.

In order to define these transformations, the macro defequivs
takes a list of equivalent forms and, optionally, the corresponding
evidence. As an example, the form

(defequivs ((cadr ?x) (car (cdr ?x)) (second ?x) (nth 1 ?x)))

creates 12 comparing functions, each dealing with one of the two-
element combinations of the given patterns.

5 RESULTS
Validation is an important part of the plagiarism detection process.
To this end, we also developed a mode for the Emacs editor [21]
that simplifies the verification of the results. The mode presents,
side by side, the fragments of code that were considered sufficiently
similar to merit a careful observation.

We tested our tool on a course where students had to create
a moderately complex project in Common Lisp. One of the re-
quirements was that students had to implement a small number of
functions with a pre-established signature.

The students submitted 112 projects with an average of 27 im-
plemented functions per project. We conducted tests where we
compared just a selected function and tests where we compared
all the implemented functions. On the first case, there were 6216
comparisons between projects. On the second case, the number
raises to 4.4 million.

5.1 Analyzing a Selected Function
In this test, we analyzed a selected function that all students had to
implement. The results are in Figure 1, where each axis represents
the project’s number and each square has a shade that is propor-
tional to the amount of evidence found. In this figure, we note the
selectivity of the compare process. Although all projects defined the
selected function, only a few pairs (16/6216 = 0.26%) were found
suspicious. This means that originality was high, that is, there were
many different implementations of the selected function. On the
other hand, if we count the number of suspicious projects (not
pairs of projects), the ratio grows to 21/112 = 18.8%. Note that the
first percentage represents the number of comparisons that were
found positive, while the second percentage represents the affected
projects. The first number will only be 100% when all students use
the very same function, while the second can reach that value if
there is one copy for each original function.

To evaluate the tool’s accuracy, all suspicious projects were man-
ually checked. We also checked projects with small negative ev-
idence to be sure that the tool did not miss anything. This was
important to determine an evidence level which justifies further
inspection. This value depends on the average size of the functions,
the difficulty of the assignment, etc. In our case, we found that
evidence below 0.6 does not represent plagiarized functions but,
instead, functions that happen to be similar.

ELS 2019 51

Plagiarism Detection for Lisp ELS’19, April 01–02 2019, Genova, Italy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 1: Evidence of copy of a selected function between
all pairs of projects. Both axis represent the set of compared
functions.

5.2 Analyzing Projects
An unrestricted test involving all projects’ definitions can produce
a very large number of suspicious pairs of definitions. To avoid
cluttering the results with irrelevant information, we only searched
for very strong evidence of copy (larger than 0.8). Note that we
excluded from this test the critical functions tested by the previous
analysis.

Figure 2 represents the results of the analysis on pairs of projects.
A combined analysis of the previous two figures shows that there
are data points in Figure 2 that are not present in Figure 1. This
means that there are students who are careful enough to develop
the critical parts of the project but careless in what regards less
relevant parts.

In the end, the final number of copied projects detected was 28,
which represents 25% of all projects, the highest ever recorded on
that course.

5.3 Pedagogical Effects
Besides helping teachers detecting plagiarism, the tool is invaluable
as a pedagogical measure. The mere fact of knowing that assign-
ments will be scrutinized regarding possible plagiarism entails in
the student a completely different attitude.

To verify the change in students’ habits, we run the tool again
one year later, on the very same course. This time, the project was
given to 132 groups of students and 109 of them delivered a solution.

We present in Figure 3 the results of the plagiarism detection
process. As before, only pairs of projects with more than 2 copied

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: Number of copies among pairs of projects. Both
axis represent the set of compared projects.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3: Number of copies among pairs of projects in the
following year. Both axis represent the set of compared
projects.

forms are shown. As we can see, there are much less copied projects
now.

52 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy António Menezes Leitão

In our opinion, the main reason for these results is the psycho-
logical effect of the perceived increase in the plagiarism detection
effort. Independently of the students’ suspicions regarding the real
cause of that increase, they quickly adapt to this perception by
either avoiding plagiarism or by increasing the effort to modify the
plagiarized projects so that cheating would not be detected.

6 RELATED WORK
The plagiarism detection tool here presented was invented in 1995.
Despite being frequently used in the following years, it remained
a closely guarded secret because we were afraid that it would not
be well-received by the student’s association. Nowadays, when
automatic grading is already a given in universities, plagiarism
detection would not surprise anyone but, at that time, that was not
the case. In fact, the existence of the tool was acknowledged only
after several other similar tools were announced.

Plagiarism detection was studied by several authors, including
[3, 5, 7, 12, 14]. The proposed approaches include textual compari-
son [1], that compares source code modulo name changes, abstract
syntax tree (AST) comparison [2, 23, 24], which is immune to textual
changes but does not detect code transformations, metric analy-
sis [5, 7], that detect code framents that have a similar number of
unique operators, operands, declared variables, etc., and fingerprint-
ing [8, 18], based on the use of hashing functions that are immune
to the typical code transformations done to hide plagiarism, so that
two plagiarised fragments produce the same hash value.

The work here presented can be considered as an extended AST-
based comparison approach that is immune to the code transfor-
mations generally employed to hide plagiarism, and where the
similarities and differences between AST nodes are evaluated using
a metric-based approach. The metrics were derived from our experi-
ence regarding the code that is typically written by our students. A
final difference is the adaptability and extensibility of our approach,
which was designed to easily support user-defined comparisons
and metrics.

7 CONCLUSION
We described a tool to identify plagiarism in students’ projects. The
tool compares program fragments and gives a certainty factor to the
question “is plagiarism present in these fragments?”. Based on this
certainty factor, the teacher can quickly identify students’ projects
that deserve more careful attention.

We have used the tool on a course and we found a surprisingly
high number of copied projects. However, the results obtained in the
following years show that students quickly adapt to the increased
scrutiny by dramatically reducing plagiarism.

There are other important uses for this tool. In particular, it can
be used to detect redundancies in code. By comparing the code
against itself one can detect which code fragments are sufficiently
similar to deserve being substituted by a conveniently parameter-
ized function.

8 ACKNOWLEDGMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019.

REFERENCES
[1] Brenda S. Baker. On finding duplication and near-duplication in large software

systems. In Linda M. Wills, Philip Newcomb, and Elliot J. Chikofsky, editors,
Proceedings: Second Working Conference on Reverse Engineering, pages 86–95. IEEE
Computer Society Press, 1995. ISBN 0-8186-7111-4.

[2] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In T. M. Koshgoftaar and
K. Bennett, editors, Proceedings; International Conference on Software Maintenance,
pages 368–378. IEEE Computer Society Press, 1998. ISBN 0-7803-5255-6, 0-8186-
8779-7, 0-8186-8795-9.

[3] H. L. Berghel and D. L. Sallach. Measurements of program similarity in identical
task environments. ACM SIGPLAN Notices, 19(8):65–76, August 1984. ISSN
0362-1340.

[4] Didier Dubois and Henri Prade. An introduction to possibilistic and fuzzy logics.
In et al Smets, editor, Non-Standard Logics for Automated Reasoning. Academic
Press, 1988. Reprinted in Readings in Uncertain Reasoning.

[5] J. A. W. Faidhi and S. K. Robinson. An empirical approach for detecting pro-
gram similarity within a university programming environment. Computers and
Education, 11(1):11–19, 1987.

[6] Jean Gordon and Edward H. Shortliffe. The dempster-shafer theory fo evidence. In
Bruce G. Buchanan and Edward H. Shortliffe, editors, Rule-Based Expert Systems,
pages 272–292. Addison Wesley Publishing Company, Reading, Massachusetts,
1984.

[7] S. Grier. A Tool that Detects Plagiarism in PASCAL Programs. SIGSCE Bulletin,
13(1), 1981.

[8] J. Howard Johnson. Identifying redundancy in source code using fingerprints.
In Proceedings of CASCON ’92, (Toronto, Ontario; November 9-11, 1992), pages
171–183, November, 1992.

[9] N. D. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial evaluation:
The generation of a compiler generator. In J.-P. Jouannaud, editor, Rewriting
Techniques and Applications, Dijon, France. (Lecture Notes in Computer Science,
vol. 202), pages 124–140. Springer-Verlag, 1985.

[10] J. Jørgensen. Generating a pattern matching compiler by partial evaluation. In
S. L. Peyton Jones, G. Hutton, and C. Kehler Holst, editors, Functional Program-
ming, Glasgow 1990, pages 177–195. Berlin: Springer-Verlag, 1991.

[11] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A programmer’s
guide to CLOS. Addison-Wesley Publishing Company, Cambridge, MA, 1989.

[12] I. Krsul and E. H. Spafford. Authorship analysis: Identifying the author of a pro-
gram. In Proc. 18th NIST-NCSC National Information Systems Security Conference,
pages 514–524, 1995.

[13] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp. Morgan Kaufmann, San Mateo, California, 1992.

[14] K. Ottenstein. An algorithmic approach to the detection and prevention of
plagiarism. ACM SIGSCE Bulletin, 8(4):30–41, 1976.

[15] A. Parker and J. Hamblen. Computer algorithms for plagiarism detection. IEEE
Transactions on Education, 32(2):94–99, May 1989.

[16] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California, 1988.

[17] Christian Queinnec and Jean-Marie Geffroy. Partial evaluation applied to sym-
bolic pattern matching with intelligent backtrack. In M Billaud, P Castéran,
MM Corsini, K Musumbu, and A Rauzy, editors, WSA ’92—Workshop on Static
Analysis, number 81-82 in bigre, pages 109–117, Bordeaux (France), September
1992.

[18] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algo-
rithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 76–85. ACM, 2003.

[19] P. Sestoft. ML pattern match compilation and partial evaluation. In O. Danvy,
R. Glück, and P. Thiemann, editors, Partial Evaluation. Dagstuhl Castle, Germany,
February 1996, volume 1110 of Lecture Notes in Computer Science, pages 446–464.
Berlin: Springer-Verlag, 1996.

[20] E. H. Shortliffe. MYCIN: A Rule-Based Computer Program for Advising Physi-
cians Regarding Antimicrobial Therapy Selection. PhD thesis, Stanford Artificial
Intelligence Laboratory, Stanford, CA, October 1974.

[21] Richard M. Stallman. EMACS: The extensible, customizable, self-documenting
display editor. Technical Report AIM-519A, Massachusetts Institute of Tech-
nology, June 1979. URL ftp://publications.ai.mit.edu/ai-publications/500-999/
AIM-519A.ps.

[22] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, second edition
edition, 89. URL ftp://cambridge.apple.com/pub/CLTL/CLTL.tar.gz.

[23] Wise. Detection of similarities in student programs: YAP’ing may be preferable
to plague’ing. SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer
Science Education), 24, 1992.

[24] Wise. YAP3: Improved detection of similarities in computer program and other
texts. SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science
Education), 28, 1996.

ELS 2019 53

54 ELS 2019

Session V: Bootstrapping

Tuesday, 2.4.2019

09:00–10:00 Christophe Rhodes: 20 more years of bootstrapping (ELS keynote)
10:00–10:30 Irène Anne Durand and Robert Strandh: Bootstrapping Common Lisp using Common Lisp
10:30–11:00 Coffee Break

ELS 2019 55

Bootstrapping Common Lisp using Common Lisp
Irène Durand

Robert Strandh
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr
LaBRI, University of Bordeaux

Talence, France

ABSTRACT
Some Common Lisp implementations evolve through careful modi-
fications to an existing image. Most of the remaining implementa-
tions are bootstrapped using some lower-level language, typically
C. As far as we know, only SBCL is bootstrapped from source code
written mainly in Common Lisp. But, in most cases, there is no
profound reason for using a language other than Common Lisp for
creating a Common Lisp system, though there are some annoying
details that have to be dealt with.

We describe the bootstrapping technique used with SICL, a mod-
ern implementation of Common Lisp. Though both SICL and the
bootstrapping procedure for creating it are still being worked on,
they are sufficiently evolved that the big picture outlined in this
paper will remain valid. Our technique uses first-class global envi-
ronments to isolate the host environment from the environments
required during the bootstrapping procedure. Contrary to SBCL,
and implementations written in some other language, in SICL, we
build the CLOS MOPclasses and generic functions first. This tech-
nique allows us to use the CLOS machinery for many other parts
of the system, thereby decreasing the amount of special-purpose
code, and improving maintainability of the system.

CCS CONCEPTS
• Software and its engineering → Compilers; Multiparadigm
languages;

KEYWORDS
CLOS, Common Lisp, Compilation, Bootstrapping
ACM Reference Format:
Irène Durand and Robert Strandh. 2019. Bootstrapping Common Lisp using
Common Lisp. In Proceedings of the 12th European Lisp Symposium (ELS’19).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.2634314

1 INTRODUCTION
In this paper1 , by bootstrapping a Common Lisp system we mean
creating some target Common Lisp system by building it from its
1In this paper, we assume that the reader is familiar with the metaobject protocol for
implementing CLOS, as described in the book [1] that is dedicated to the subject.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2634314

associated source code, using various tools and language processors
to transform that source code into an executable file for some typical
operating system such as GNU/Linux. The typical way of making
such a target Common Lisp system evolve through maintenance,
is to modify its source code and then restart the bootstrapping
procedure to build an updated executable file.

Not all Common Lisp systems are created so that they can evolve
this way. Some systems evolve by the careful modification of an
existing executing image which is then saved as an executable file
that can be executed as usual.

In this paper we will concentrate on the technique of bootstrap-
ping used with SICL2.

Before we can start investigating different options for bootstrap-
ping, we must deal with an annoying but crucial detail, namely the
definition of source code. The Free Software Foundation defines it
as “the preferred form of a work for making modifications to it”.
We agree completely with this definition. It excludes the use of
code that was automatically produced. In practice, it also excludes
code written directly in machine language and most code written in
assembly language, with the exception of (a) small code fragments
that can not be expressed easily in some other language, and (b)
code fragments that are part of a code generator written in some
higher-level language.

However, for it to be possible for the source code of a Common
Lisp system to be turned into an executable file, there must be
language processors (i.e., compilers and/or interpreters) available
that can handle the languages that the source code is expressed
in. The main debate when it comes to bootstrapping techniques
seems to be what is meant by available in this context. A common
definition seems to be something like whatever is available on a
GNU/Linux system out of the box.

One of the consequences of such a definition of available is that,
in order to write a Common Lisp system, one has to use some
programming language considered lower level than Common Lisp
itself. Typically, C plays this role.

In this paper, we argue that one of the main reasons of the cre-
ator(s) of a target Common Lisp system wanting such a system in
the first place, is that they are convinced of the virtues of this lan-
guage for writing programs. Furthermore, Common Lisp is uniquely
well adapted to writing language processors. The obvious choice for
a language for writing a Common Lisp system is therefore Common
Lisp itself. Since there is now a multitude of good Common Lisp
implementations available and easily installable on widely-used op-
erating systems, we think that Common Lisp should be considered

2https://github.com/robert-strandh/SICL

56 ELS 2019

Bootstrapping Common Lisp using Common Lisp ELS’19, April 01–02 2019, Genova, Italy

to be a language for which there are language processors available
for bootstrapping.

2 PREVIOUS WORK
2.1 Overview of existing techniques
In his excellent paper describing how SBCL is bootstrapped [2],
Rhodes gives an overview of how different existing Common Lisp
systems are made to evolve. Below, we summarize the contents of
that paper.

We can divide Common Lisp implementations into those that are
mostly written in some other language, and those that are mostly
written in Common Lisp.

In the first category, there are implementations that specifically
cater to applications written in that other language and that need
some scripting capabilities that are supplied by the Common Lisp
implementation. Whether it is advantageous or not for these imple-
mentations to be written mainly in that other language is outside
the scope of this paper.

Of the implementations in the second category that are currently
actively used, Rhodes claims3 that Allegro, LispWorks, CMUCL, Sci-
eneer, and CCL are only possible to build using older versions of
the same system, and only using image-based techniques. Only
SBCL can be bootstrapped using several other Common Lisp im-
plementations.

Even a Common Lisp implementation that is largely written in
Common Lisp such as SBCL has some amount of code written in
other languages. In the case of SBCL, Rhodes gives the number
35 000 lines of C and assembly code “for services such as signal
handling and garbage collection”, of which 8 000 is for the garbage
collector. The remaining lines can be summarized as around 2 000
lines per operating system supported. This is a very modest amount
of code written in other languages.

2.2 Common Lisp systems in other languages
When a language such as C or C++ is used to implement a Common
Lisp system, a small subset of the Common Lisp language is imple-
mented this way. We call that subset the base language. The result
of the initial bootstrapping procedure is typically an executable file
containing the base system. Additional modules are then added to
the base system to obtain a complete Common Lisp system. These
additional modules must be implemented in the subset of Common
Lisp defined by the base language and previously added modules.

There are several issues with this technique. For one thing, some
major components that would be more easily expressed in Common
Lisp must be written using the implementation language so that
new modules can be added to the system, in particular a reader and
an evaluator.

Another major issue has to do with maintenance. When one of
the additional modules is modified, it is easy to forget exactly what
subset of the Common Lisp language is allowed at that point in the
bootstrapping procedure. The code for a particular module must
often be expressed in some unidiomatic way and it is tempting
to make the modified code more idiomatic, but doing so will then
break the bootstrapping procedure.
3For the commercial Common Lisp implementations cited in the paper by Rhodes, he
includes a disclaimer that only anecdotal evidence for this information is available.

2.3 Common Lisp systems in Common Lisp
Because of the way compilation is defined by the Common Lisp
standard, there are some issues that need to be resolved in order for
it to be possible for a target Common Lisp system to be bootstrapped
on a host Common Lisp system. Since SBCL is very likely the only
Common Lisp implementation written mostly in Common Lisp that
can be built from an existing Common Lisp implementation, we
describe how SBCL solves some of these issues.

2.3.1 Packages and environments. Most existing Common Lisp
systems have a single global environment that is used both as
the compilation environment and as the run-time environment.
Compiling Common Lisp source code requires the existence of
definitions of macros, types, etc. in that environment, and when
source code for a target Common Lisp system is compiled using a
host Common Lisp system, these definitions must be those of the
target system. However, with a single global environment there
can only be one definition of these entities.

SBCL solves this problem by using different package names for
the code of the host system and the target system. In a final step,
the packages of the target system are then renamed to conform to
the standard.

2.3.2 The compiler and CLOS. Some aspects of CLOS require the
presence of the compiler, at least if the resulting code is required to
have some reasonable performance. In particular, the compiler is
required to create a discriminating function from the effective meth-
ods4 returned by compute-effective-method. For that reason, it
becomes difficult to use generic functions and standard classes in
the code of the compiler itself.

SBCL solves this issue by not using generic functions and stan-
dard classes in the code of the compiler. Thus, SBCL can load the
compiler into a minimal running target system and then bootstrap
CLOS afterwards.

However, not using generic functions and standard classes in the
compiler has some of the same problems as Common Lisp systems
that are written in some other language, namely that care has to be
taken to make sure the proper subset of the language is used when
the code of the compiler is being worked on. Furthermore, generic
functions and standard classes are great tools for structuring com-
plex code, so not being able to use these tools in such a significant
and complex part of a Common Lisp implementation negatively
affects the clarity and maintainability of the code.

3 THE SICL SOURCE CODE
SICL is a system that is written entirely in Common Lisp. We
decided to use the full language to implement the system so as to
avoid having to define and remember what subset of the language
is allowed for which modules. Thus, the compiler, called Cleavir5,
makes heavy use of generic functions and classes. By using these
two types of objects, we can have a compiler that is adaptable to
different Common Lisp implementations. It is currently used as the

4Recall that the result of a call to compute-effective-method is a lambda expression.
This lambda expression must be turned into something that is executable, hence the
need for an evaluator.
5Cleavir resides in the SICL repository on GitHub.

ELS 2019 57

ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

main compiler of Clasp6, and recently, a Cleavir-based compiler
has been written for CLISP7.

In addition to using the full language for the implementation of
SICL, we want the code to be as idiomatic as possible. For example,
our definition of the class t, looks like this:
(defclass t ()

()
(:metaclass built-in-class))

This definition clearly expresses the characteristics of the class
t. It has no superclasses because no superclasses are explicitly
mentioned, and the metaclass built-in-class does not provide
any default superclasses like standard-class and

funcallable-standard-class do. While this definition of the
class t is clear, it is not operational as is. The metaclass

built-in-class is an indirect subclass of the class t, so the
class t must exist in order for the class built-in-class to exist.

Our definitions of the classes class and standard-class look
like this:8

(defclass class (specializer)
((%name :initform nil :initarg :name ...)
...
(%direct-subclasses :initform '() ...)))

(defclass standard-class (class)
(...))

Again, these definitions are clear. No metaclass option is given,
so the metaclass defaults to standard-class. Like the defintion
of t, these definitions are not operational as is, because the class
standard-class must exist in order to be the metaclass of itself.

In a Common Lisp implementation that must bootstrap CLOS
from a subset of the language that does not include CLOS, some
other mechanism must be used. As an example of the consequences
of the use of such a subset, consider the following definitions from
ECL9:
(defparameter +class-slots+

`(,@+specializer-slots+
(name :initarg :name :initform nil ...)
...
(direct-subclasses :initform nil ...)
...))

(defparameter +standard-class-slots+
(append +class-slots+

'((optimize-slot-access)
(forward))))

Here, two special variables are defined, each one containing the
specifications of the direct slots of a class. These two definitions
express the exact same information as two defclass forms defin-
ing the classes class and standard-class, respectively. However,
because the defclass form can not be used at this stage of the
bootstrapping procedure, a different mechanism must be used.

In addition to using the CLOS machinery for defining the classes
defined by the metaobject protocol, we use the same machinery
6https://github.com/clasp-developers
7https://clisp.sourceforge.io/
8In reality, there are intermediate classes between class and standard-class that
are not shown here.
9https://common-lisp.net/project/ecl/

for defining system classes. For example, our definition of the class
symbol looks like this:
(defclass symbol (t)

((%name :reader symbol-name)
(%package :reader symbol-package))
(:metaclass built-in-class))

Not only is this definition clear, it is also operational. By using the
CLOS machinery for definitions of system classes, we avoid having
to use an additional, special, mechanism for this purpose.

In contrast, consider this definition of the system class symbol
from SBCL:
(define-primitive-object

(symbol :lowtag other-pointer-lowtag
:widetag symbol-header-widetag
:alloc-trans %make-symbol
:type symbol)

...
(name :ref-trans symbol-name :init :arg)
(package :ref-trans symbol-package

:set-trans %set-symbol-package
:init :null)

...)

Again, a special mechanism must be used, since CLOS is not avail-
able when the type symbol must be defined.

The purpose of the SICL bootstrapping procedure is to make
these idiomatic definitions operational in the host environment
so as to create a graph of objects isomorphic to that of the target
system, and then to create the target graph in an executable file.

By doing it this way, we simplify system maintenance. The
bootstrapping procedure is able to work with the definitions of
classes, generic functions, and methods using the standard macros
defclass, defgeneric, and defmethod, even though these defini-
tions would not be operational in a system that needs to build up
functionality from a language subset that does not include CLOS.
The SICL maintainer is thus free to alter definitions of core system
objects, relying on the bootstrapping procedure to make those defi-
nitions operational and ultimately turning them into an executable
system.

4 OUR TECHNIQUE
4.1 SICL object representation
A SICL object is represented in one of three different ways:
• As an immediate object where the object is stored in the

pointer itself, with the appropriate tag bits. Fixnums, char-
acters and single floats are represented this way.
• As a two-word block. This is how cons cells are represented.
• As a two-word block called a header where the first word

points to a class object, and the second word points to a
sequence of words, called the rack, that contains the slots
of the object. All objects other than immediates and cons
cells are represented this way. We call this representation a
general instance.

The first word of the rack contains a stamp which is a unique
integer taken from the class when the instance was created. The
stamps of the arguments to a generic function are used by the

58 ELS 2019

Bootstrapping Common Lisp using Common Lisp ELS’19, April 01–02 2019, Genova, Italy

generic dispatch technique to determine which effective method to
execute. The object representation and generic dispatch technique
has been described in detail previously [3], but this short summary
is sufficient to understand our bootstrapping technique.

In the description of our technique, we use the word class in
a general way, as an object that can be used as a model for the
creation of instances. Thus the word class does not imply that it
is a class in the sense of the host Common Lisp implementation.
While this usage of the word class may seem odd, recall that a
class is just an ordinary Common Lisp object that is passed as an
argument to make-instance and other functions called by it which
then returns a different object. We exploit this idea by supplying
our own definition of make-instance in different phases of the
bootstrapping procedure.

Similarly, we use the word generic function in a general way,
as an object that can be executed and that can have methods as-
sociated with it, providing partial implementations of the generic
function. Again, while this usage of the word generic function may
seem odd, recall that a generic function is simply an ordinary Com-
mon Lisp object of type funcallable-standard-object for which
the ultimate definition (called the discriminating function) is com-
puted by combining partial definitions (the methods) associated with
it. We exploit this fact by providing different representations of
generic functions in different phases of the bootstrapping procedure,
and by supplying different versions of compute-discriminating-
-function adapted to each phase. Thus, a generic function is not a
generic function in the sense of the host Common Lisp implemen-
tation. However, during the bootstrapping procedure, these objects
are executable in the host system, because they are instances of the
host class funcallable-standard-object.

4.2 Environments for bootstrapping
Our technique uses several first-class global environments [5] to
create a graph of objects that is isomorphic to the graph of objects
to be written to the executable file instantiating the target Common
Lisp implementation. By using first-class global environments, we
avoid the problems related to packages and environments cited in
Section 2.3. The main feature of our technique, though, is that we
create the generic functions and classes of the metaobject protocol
first.

The environments are filled with definitions mainly as a result of
loading files containing production SICL code, though some code
specific to bootstrapping is required as discussed at the end of this
section. This loading procedure uses the Eclector10 reader and the
Cleavir compiler to produce intermediate code in the form of a
fairly conventional flow graph of instructions. The Cleavir compiler
takes a first-class global environment as an argument, and uses this
environment to search for definitions of macros, classes, types, etc.
The resulting intermediate code is then translated in two different
ways:

(1) Native target code is generated from it, and attached to host
objects representing executable target objects such as ordi-
nary functions, generic functions, and methods.11

10https://github.com/robert-strandh/Eclector
11We do not yet have a code generator for native executable code, so currently this
part of the bootstrapping procedure is omitted.

(2) It is translated to a simple subset of Common Lisp code that
accesses that same environment for definitions of functions
and other objects. This Common Lisp code is then compiled
using the host compiler in order to make it executable in the
host.

The remainder of this section is concerned with how the host-
executable code is used in order to determine the graph of target
objects represented as an isomorphic graph of host objects.

4.3 Definitions
In preparation for the bootstrapping procedure, several first-class
global environments are created and filled with definitions of SICL
macros. The definitions of those macros reside in production SICL
files. Little or no special code is required for those definitions.

A number of host object types are used during bootstrapping,
in particular symbols, packages, cons cells, and integers. However,
when such an object is used as an argument to a SICL generic
function, a special version of class-of assigns a SICL class object
as its type. Some of the host functions operating on these kinds of
objects are imported to our environments in preparation for the
bootstrapping procedure.

To facilitate the description of our technique, we need some
definitions:

Definition 4.1. A host class is a class in the host system. If it is
an instance of the host class standard-class, then it is typically
created by the host macro defclass.

Definition 4.2. A host instance is an instance of a host class. If it is
an instance of the host class standard-object, then it is typically
created by a call to the host function make-instance using a host
class or the name of a host class.

Definition 4.3. A host generic function is a generic function cre-
ated by the host macro defgeneric, so it is a host instance of the
host class generic-function. Arguments to the discriminating
function of such a generic function are host instances. The host
function class-of is called on some required arguments in order
to determine what methods to call.

Definition 4.4. A host method is a method created by the host
macro defmethod, so it is a host instance of the host class method.
The class specializers of such a method are host classes.

Definition 4.5. A simple host instance is a host instance that is
neither a host class nor a host generic function.

Definition 4.6. An ersatz instance is a target general instance (as
defined in Section 4.1) represented as a host data structure, using
a host standard object to represent the header and a host simple
vector to represent the rack. In fact, in order for the ersatz instance
to be callable as a function in the host system, the header is an
instance of the host class funcallable-standard-object.

Definition 4.7. An ersatz instance is said to be pure if the class
slot of the header is also an ersatz instance. An ersatz instance is
said to be impure if it is not pure. See below for more information
on impure ersatz instances.

Definition 4.8. An ersatz class is an ersatz instance that can be
instantiated to obtain another ersatz instance.

ELS 2019 59

ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

instance

of

subclass

of

standard−

generic−

function

funcallable−

standard−

class

built−

in−

class

standard−

class

t

Figure 1: Simplified diagram of MOP classes.

Definition 4.9. An ersatz generic function is an ersatz instance
that is also a generic function. It is possible for an ersatz generic
function to be executed in the host system because the header object
is an instance of the host class funcallable-standard-object.
The methods on an ersatz generic function are ersatz methods.

Definition 4.10. An ersatz method is an ersatz instance that is
also a method.

Definition 4.11. A bridge class is a representation of a target class
as a simple host instance. An impure ersatz instance has a bridge
class in the class slot of its header. A bridge class can be instantiated
to obtain an impure ersatz instance.

Definition 4.12. A bridge generic function is a representation of a
target generic function as a simple host instance, though in order
for it to be executed by the host, it is an instance of the host function
funcallable-standard-object.

Arguments to a bridge generic function are ersatz instances. The
bridge generic function dispatches on the stamp (See Section 4.1.)
of its required arguments.

The methods on a bridge generic function are bridge methods.

Definition 4.13. A bridge method is a target method represented
as a simple host instance. The class specializers of such a method
are bridge classes. The method function of a bridge method is an
ordinary host function.

4.4 Bootstrapping phases
The essence of our technique consists of four phases (1 to 4), using
six first-class global environments. An initial phase 0 imports host
classes to environment E0. Only classes that are required in phase
1 are imported. Classes standard-method, standard-generic-
-function, and the class used to represent slots standard-direct-
-slot-definition are imported with the same. Classes standard-
-class, built-in-class, and funcallable-standard-class in
environment E0 all refer to one and the same host class, namely a
subclass of the host class funcallable-standard-class.

In each phase i > 0, three first-class global environments are
involved, Ei−1, Ei , and Ei+1. Before phase i starts, Ei−1 contains
classes to be instantiated during phase i , and Ei contains generic
functions that are not involved in phase i , but that will be used in

host
object

bridge
object

ersatz
object

Figure 2: Objects in different phases.

phase i + 1 to operate on the instances of the classes in Ei−1. Some
of the generic functions in Ei are accessor functions containing
methods that were automatically added as a result of the classes
in Ei−1 being defined. Others are higher-level functions that call
those accessors to accomplish tasks such as initialization of various
metaobjects, class finalization, creation of effective methods, and
creation of discriminating functions.

A phase i has two main steps:
(1) Accessor generic functions are created in Ei+1 by loading

SICL production code containing defgeneric forms. These
generic functions are accessor functions for MOP classes and
MOP generic functions. These functions are created in Ei+1
rather than in Ei so as to protect the existing functions in Ei
that are needed later.

(2) Classes are created in Ei by loading SICL production code
containing defclass forms. As a result of the creation of
these classes, methods are automatically added to the corre-
sponding accessor generic functions in Ei+1.

Depending on the phase, SICL production code might be loaded
before the first step, between the two steps, or after the last step.

Four phases accomplish the creation of a number of objects,
ending with a complete set of ersatz objects. The result of each
phase is illustrated by a separate figure. In these figures, the shape
of each object illustrates its type as shown in Figure 2.

The four phases accomplish this following results:
(1) Host classes and host class metaclasses in E0 are used to

create host generic functions in E2 and host classes in E1.
The result of this phase is illustrated in Figure 3.

(2) Host classes in E1 are used to create bridge generic functions
in E3 and bridge classes in E2. The result of this phase is
illustrated in Figure 4.

(3) Bridge classes in E2 are used to create impure ersatz generic
functions in E4 and impure ersatz classes in E3. The result
of this phase is illustrated in Figure 5.

(4) Impure ersatz classes in E3 are used to create pure ersatz
generic functions in E5 and pure ersatz classes in E4. The
result of this phase is illustrated in Figure 6.

The result of these phases is that the impure ersatz generic
functions in environment E4 can operate on the pure ersatz generic
function in environment E5 and on the pure ersatz classes in E4.
But they can also operate on impure ersatz objects, provided their
call caches contain entries for the corresponding stamps. Filling
the call caches is the purpose of our satiation technique [4].

4.5 Tying the knot
At the end of these four phases, we have fully functional impure
ersatz generic functions in environment E4, and fully functional
impure classes in environment E3. But we still do not have the
cyclic graph of metaobjects that a functioning CLOS system requires.

60 ELS 2019

Bootstrapping Common Lisp using Common Lisp ELS’19, April 01–02 2019, Genova, Italy

E0

E1

E2

Figure 3: Phase 1.

E1

E2

E3
instance of

subclass of

operates on

Figure 4: Phase 2.

E2

E3

E4
instance of

subclass of
operates on

Figure 5: Phase 3.

Furthermore, there are still bridge generic functions that might be
called in order to operate on our impure ersatz metaobjects.

To accomplish the conversion of this hierarchy of objects to a
cyclic graph, we need to modify the class slot of the headers of each
impure metaobject so that instead of referring to a bridge class, it

instance of

subclass of
operates on

E3

E4

E5

Figure 6: Phase 4.

refers to an impure ersatz class. This operation will transform every
impure ersatz metaobject into a pure ersatz metaobject. However,
there are a few more operations required to completely remove all
references to bridge metaobjects:
• Each ersatz metaobject contains a list of the effective slot

definition metaobjects of its class as the second word of the
rack. In an impure ersatz metaobject, those effective slot
definitions are bridge objects. Once the class field of the
impure ersatz metaobject has been updated, this list must
be updated to contain a reference to the list of the ersatz
effective slot definitions from the new ersatz class.
• Each ersatz generic function contains a slot containing the

method class of the methods on this generic function. In an
impure ersatz generic function, this slot refers to a bridge
class, so it must also be updated.

We must still find and update all impure ersatz metaobjects in
the system. For classes and generic functions, this is trivial, as they
are all reachable from the first-class global environment they are
defined in. For other object types such as methods, slot-definitions,
and method combinations, this is not the case. They must be found
by a traversal of the class or generic function metaobject that they
are part of. Such a traversal is straightforward.

Before the cyclic graph can be traversed and an isomorphic graph
be generated in a native executable file, additional definitions must
be loaded:
• Standard classes that are needed in order for the resulting na-

tive executable to be viable must be loaded. In particular, defi-
nitions of classes such as symbol, package, cons, sequence,
list, null, number, rational, integer, and fixnum are
needed in order for it to be possible to load compiled code
into the executing image.
• Many standard functions are also needed, such as functions

on packages, lists, hash tables, etc. Functions that operate
on first-class global environments are needed as well.
• A simple version of the compiler must be loaded so that

the resulting executable image can construct discriminating
functions when definitions of generic functions and methods
are loaded.

ELS 2019 61

ELS’19, April 01–02 2019, Genova, Italy Irène Durand and Robert Strandh

On the other hand, the garbage collector may not be needed in
the initial executable image, though the data structures that the
garbage collector works with must of course be present so that
objects can be laid out in memory.

5 BENEFITS OF OUR TECHNIQUE
Appendix C of “The Art of the Metaobject Protocol” [1] (Living with
Circularity) cites a number of ways in which their system handles
circularity and avoids bootstrapping and metastability issues.

5.1 Bootstrapping benefits
The first bootstrapping problem that is mentioned is the fact that
standard-class must exist before it can be created. Their solution
is to create this class using some special-case mechanism. Our
technique uses the version of standard-class in the preceding
environment, so this problem is avoided altogether. As a result, we
can freely modify the definition of standard-class and rerun the
bootstrapping procedure. No special case has to be considered.

The second bootstrapping problem mentioned is that generic
functions are used for method lookup, but these generic functions
can not exist until a significant part of the protocol has been im-
plemented. As an example, take the call to ensure-class made
as a result of executing the expansion of a defclass form. By
having ensure-class check for the special case when the argu-
ment is standard-class and by supplying a special function for
creating instances of standard-class they avoid bootstrapping
issues, simply because during bootstrapping, all classes created
will be instances of standard-class. They also supply a special
version of finalize-inheritance that checks for the metaclass
standard-class and calls special-purpose code in this case. With
our technique, no such special case is needed. All classes that are
instantiated are fully operational in the preceding environment, as
is the finalize-inheritance generic function.

5.2 Metastability benefits
The first example of a metastability problem mentioned in the book
is that slot-value calls slot-value-using-class which then
calls slot-location which in turn recursively calls slot-value
on the class metaobject to access the slot metaobjects of the class.
The authors propose to solve this problem by arranging for the func-
tion slot-location to check for the special argument effective-
-slots and return a predefined location. Our technique does not
need this kind of special case, because the function class-slots
does not call slot-value at all. It accesses the effective-slots
slot directly, using its location. This location has been compiled
in during the creation of the effective method and discriminating
function for class-slots.

The final issue discussed in the book arises because the func-
tion compute-discriminating-function is also a generic func-
tion that can not be called with itself as an argument when a method
has been added or removed from it. Again they solve the issue by a
special case whereby a test is made to see whether the argument is
a standard generic function (i.e. an instance of standard-generic-
-function) and if so, a special version of compute-discriminating-
-function which is not a generic function is called instead. With

our technique, every generic function, compute-discriminating-
-function included, has a call cache that includes an effective
method that is able to handle arguments that are direct instances of
standard-generic-function. That call cache entry is not invali-
dated when compute-discriminating-function has new meth-
ods added to it, at least not when the methods added respect the
restrictions of the metaobject protocol, i.e. that user code is not al-
lowed to add methods that are applicable when given only standard
objects as arguments.

5.3 Other benefits
In addition to solving the bootstrapping issues and the metastability
issues given in the “The Art of the Metaobject Protocol” book, our
technique has several additional benefits.

Since we begin the bootstrapping procedure by defining the
classes and generic functions specified by the metaobject protocol,
we are able to use the CLOS machinery to define system classes. In
a system where CLOS is added late, many system classes must be
defined using some other mechanism.

Furthermore, as already mentioned, our technique has great
advantages to maintenance. There are no dependencies between
CLOS code and other code that require duplication of information
that must be kept synchronized when some code is modified.

6 CONCLUSIONS AND FUTURE WORK
We have described a technique for bootstrapping a Common Lisp
system using an existing conforming Common Lisp system that is
also supported by the library closer-mop. To our knowledge, no
existing Common Lisp system is bootstrapped this way.

There are several advantages to our technique:
• The full Common Lisp language can be used in order to im-

plement the system, including the compiler, thereby making
the code more maintainable.
• By bootstrapping the MOP generic functions and the hierar-

chy of classes first, we eliminate the bootstrapping problems
and metastability problems cited by the AMOP book [1].
• Also, by bootstrapping the MOP machinery first, we take

advantage of it by using it to define all the standard system
classes, thereby eliminating the need for special mechanisms
for this purpose.
• The absence of special mechanisms that are needed in exist-

ing implementations for defining many aspects of the system
itself, further contributes to the maintainability of our code.

Even though the technique outlined in this paper is known to
work, many more aspects of the system need further work, in-
cluding the bootstrapping technique itself, in order for a native
executable to be generated:
• We must supply a (simple) code generator that translates

intermediate code to native code. The amount of work re-
quired is fairly modest, and mainly consists of creating na-
tive code for memory operations such as car and standard-
-instance-access, for object allocation, and for simple arith-
metic on fixnums.
• Interface code to the operating system must be supplied, in

particular for input/output operations.

62 ELS 2019

Bootstrapping Common Lisp using Common Lisp ELS’19, April 01–02 2019, Genova, Italy

• We have yet to write the code that translates the host rep-
resentation of the object graph into a native representation.
Special care must be taken for object types that are imported
from the host during bootstrapping, such as symbols, num-
bers, and cons cells.

However, we are in no hurry to create a native executable system.
The moment we do, we lose a fairly good environment (namely
the host Common Lisp system) for debugging our code. Instead,
we plan to use the host environment for testing as many aspects
of SICL as possible, and for creating support for better debugging
capabilities, and only later create a native executable.

In terms of future work, there are still several optimization tech-
niques that need to be implemented for the Cleavir compiler frame-
work.

7 ACKNOWLEDGMENTS
We would like to thank David Murray for providing valuable feed-
back on early versions of this paper.

REFERENCES
[1] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol. MIT

Press, Cambridge, MA, USA, 1991. ISBN 0262111586.
[2] Christophe Rhodes. Self-sustaining systems. chapter SBCL: A Sanely-

Bootstrappable Common Lisp, pages 74–86. Springer-Verlag, Berlin, Heidel-
berg, 2008. ISBN 978-3-540-89274-8. doi: 10.1007/978-3-540-89275-5_5. URL
http://dx.doi.org/10.1007/978-3-540-89275-5_5.

[3] Robert Strandh. Fast generic dispatch for common lisp. In Proceedings of ILC 2014
on 8th International Lisp Conference, ILC ’14, pages 89:89–89:96, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2931-6. doi: 10.1145/2635648.2635654. URL
http://doi.acm.org/10.1145/2635648.2635654.

[4] Robert Strandh. Resolving metastability issues during bootstrapping. In Proceed-
ings of ILC 2014 on 8th International Lisp Conference, ILC ’14, pages 103:103–103:106,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2931-6. doi: 10.1145/2635648.
2635656. URL http://doi.acm.org/10.1145/2635648.2635656.

[5] Robert Strandh. First-class global environments in common lisp. In Proceedings
of the 8th European Lisp Symposium, ELS ’15, pages 79 – 86, April 2015. URL
http://www.european-lisp-symposium.org/editions/2015/ELS2015.pdf.

ELS 2019 63

64 ELS 2019

Session VI: Lisp in Action

Tuesday, 2.4.2019

11:00–11:45 Nicolas Hafner: Shader Pipeline and Effect Encapsulation using CLOS
11:45–12:30 Robert P. Goldman and Ugur Kuter: Hierarchical Task Network Planning in Common Lisp
12:30–14:30 Lunch

ELS 2019 65

Shader Pipeline and E�ect Encapsulation using CLOS
Nicolas Hafner

Shirakumo.org
Zürich, Switzerland

shinmera@tymoon.eu

ABSTRACT
Modern real-time graphics make use of a lot of tricks in order to
produce stunning visuals. Many of these tricks require separate
rendering passes, as well as separate rendering logic for each pass.
These passes are then combined in a variety of ways in order to pro-
duce a �nal image. The interaction between such a rendering pass
and the objects it draws, as well as the interaction between multiple
passes within a pipeline can become quite complex. Often times, in
order to handle this complexity, the passes and objects are gener-
alised, and the render logic is controlled almost entirely by either
the object or the pass. We present a new method of representing
objects, passes, and pipelines, which allows a modular encapsula-
tion of e�ects and rendering behaviour, as well as object-oriented
composition through inheritance. We make use of CLOS’ multi-
ple inheritance, multimethods, and standard method combination
to form extensible protocols that allow this new method. We also
make use of the MOP, in order to introduce additional metadata to
classes.

CCS CONCEPTS
• Software and its engineering → Object oriented architec-
tures; Abstraction, modeling and modularity; Object oriented frame-
works; Compilers; • Computing methodologies → Computer
graphics;

KEYWORDS
Common Lisp, OpenGL, GPU, CLOS, Object Orientation
ACM Reference Format:
Nicolas Hafner. 2019. Shader Pipeline and E�ect Encapsulation using CLOS.
In Proceedings of the 12th European Lisp Symposium (ELS’19). ACM, New
York, NY, USA, 7 pages. https://doi.org/10.5281/zenodo.2636508

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2636508

1 INTRODUCTION
Modern graphics systems such as OpenGL Core and DirectX o�er
a lot of customisation to the programmer. Particularly, in order
to render an image, they allow the programmer to supply code
fragments (shaders) that are run directly on the GPU. These code
fragments �ll in steps of a �xed rendering pipeline that is executed
on the GPU in order to transform vertex data into the pixels of an
image. The pipeline for OpenGL is illustrated in Figure 1.

Figure 1: The stages of the OpenGL rendering pipeline. White
boxes represent stages that can be customised with shader code.

For consistency, we refer to a step within the hardware render-
ing pipeline as a “stage”, an invocation of the hardware pipeline as
a “pass”, and all invocations of the hardware pipeline to produce
an image as a “frame”.

Each of the customisable stages accepts only a single shader
for each pass, making it di�cult to separate, encapsulate, and ul-
timately combine behaviour. Furthermore, the steps required in
order to change the shaders and shader inputs can be non-trivial
and expensive to execute.

Managing this graphics state and the order of rendering can be
very complicated for modern requirements. Rendering a frame of-
ten requires a multitude of passes, each with their own parameters
and shared data. The rendering of each object within a pass can also
di�er, leading to even more state that needs to be correctly managed.

66 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Nicolas Hafner

Figure 2: A sample frame pipeline with shadow mapping, deferred
rendering, and bloom. Each box represents a pass and each edge a
texture bu�er.

This complexity results in a di�cult challenge for modularity.
We attempt to solve this challenge through several systems:
• A protocol for communicating information between a pass

and the objects rendered within.
• A protocol to connect the inputs, outputs, and parameters

of di�erent passes.
• An algorithm to automatically allocate shared textures used

as bu�ers between passes.

2 RELATED WORK
Courreges[1] presents an in-depth analysis of the rendering pro-
cedure employed by the modern, high-production game GTA V. It
illustrates the many passes to produce a �nal image, as well as their
data dependencies.

Harada et al.’s work on Forward+[2][3] also clearly illustrates
the need for systems that support multi-pass rendering pipelines
with complex data interaction schemes.

Gyrling[4] presents an overview of the techniques used to per-
form parallel rendering in Naughty Dog’s private game engine.
Individual stages within a pass, render passes of a frame, and multi-
ple frame renderings are divided up into many small jobs that can
run in parallel and are synchronised using counters on a shared
structure. How rendering logic requirements are communicated is
however not explained.

The case study of the Unity game engine by Messaoudi et al[5]
shows the availability of a set of �xed rendering pipelines that can
be customised to a very limited extent with custom shaders. These
shaders must �t into Unity’s existing lighting and overall render-
ing model. While Unity does allow building a custom pipeline via
their Scriptable Rendering Pipeline[6], they do not seem to o�er
any speci�c encapsulation or modularity features.

The work by He et al.[7] introduces a framework for general
encapsulation of shaders and their parameters into structures that
minimise the overhead of changing GPU state while retaining the
ability to dynamically compose shader parts. They do however not
create a distinction between properties for rendering an object and
for those for rendering an overall pass.

Foley et al.’s work on Spark[8] presents a high-level graph-based
system for de�ning reusable and composable shader components.
Their system shows a much more distanced view of the underlying
graphics hardware than we attempt. Similar to He’s work, they do
not present a separation between object logic and pass logic.

In our previous work[9] we introduce a system to tie shader
code to classes and to compose behaviour through inheritance. We
make use of this system and extend it to allow further control over
rendering behaviour in individual passes.

3 OVERVIEW
The system is composed of three distinct entities: shader objects,
shader passes, and pipelines. Both shader objects and shader passes
encapsulate rendering logic. The pipeline, on the other hand, repre-
sents the assembly of a complete frame, and only in�uences ren-
dering in the sense that it tracks which passes to run in what order.

Due to the restrictions of the rendering pipeline of OpenGL, the
combination of the render logic of objects and of passes is not triv-
ial. We present a protocol to solve this di�culty in section 4.

In section 5 we present a protocol for representing input and
output information of a pass and for connecting these inputs and
outputs between passes together.

Due to the complex interactions between passes in a pipeline, al-
location of intermediary bu�er textures is error-prone and tedious.
We present algorithms to automate this in section 6.

Finally, in section 7 we show the results of implementing a
medium-sized pipeline using these techniques.

4 PASSES
A shader pass should encapsulate the logic for drawing objects in a
certain way. In order to accomplish its task, the pass needs to be
able to partially or fully control the shaders of objects. For instance,
an object should still be able to have control over how its vertices
are constructed and what materials and textures are applied to it.
The shader pass should be able to make use of this information if it
needs to, or discard it completely if unneeded.

In order to permit this amount of control, we make use of the
shader composition capabilities that we presented in our previous
work[9]. This technique allows us to combine pieces of OpenGL
Shader Language (GLSL) code. On top of this shader combination
sits a new protocol to control the interaction between shader passes
and objects.

ELS 2019 67

Shader Pipeline and E�ect Encapsulation using CLOS ELS’19, April 01–02 2019, Genova, Italy

(defclass shader-pass ()
()
(:metaclass shader-pass-class))

(defgeneric register-object-for-pass (shader-pass object))
(defgeneric shader-program-for-pass (shader-pass object))
(defgeneric make-pass-shader-program (shader-pass object))
(defgeneric coerce-pass-shader (shader-pass object stage))
(defgeneric render-with (shader-pass object))
(defgeneric render (object target))

Listing 1: The protocol for shader passes.

For any object that should be rendered using a given pass, �rst
register-object-for-pass must be called. This call allows the
pass to prepare the shader program that will be used during render-
ing for this object. A shader program is an OpenGL resource that
compiles the shaders for the stages of a pass together. Using
shader-program-for-pass this program can then later be retrieved.
The shader program is important for objects to access, as it al-
lows them to set values for “uniform” variables that are used in the
shader code.

register-object-for-pass calls make-pass-shader-program
to compute this program, and registers it internally in the shader
pass so that it can be retrieved later. If the shader pass would like
to retain complete control over how each object is drawn, it would
forego this call and instead generate its own shader program. Doing
so is especially useful for post-processing e�ects that don’t render
any objects at all, and instead simply operate on textures that are
output by previous passes.

make-pass-shader-program gathers all the shader sources for
a program using coerce-pass-shader and then generates a repre-
sentation for an OpenGL shader program. This representation also
includes additional information such as the data bu�ers used.

coerce-pass-shader computes the e�ective shader source for
a particular shader stage or type. Typically this computation simply
involves the combination of the shader sources of both the shader
pass and of the object, for the given shader type. We perform this
combination using the same parsing and code walking strategy as
we described in our previous work.[9]

Objects are typically rendered using the render function. Users
are encouraged to add methods that specialise the behaviour and
perform necessary setup, as well as to perform the �nal draw call
for their custom object classes. For instance, a very primitive class
could look as shown in Listing 2.

This function is �ne for allowing the object control over the
behaviour. However, the pass cannot exert the same amount of
control, due to the generic function’s argument precedence. For ex-
ample, if an :around method specialised on the object exists, a pass
would not have any way of preventing it from �ring, as its own
:around method would be executed afterwards. We thus introduce
another function with inverted argument order that is called �rst.

(defclass simple-object ()
((vertex-array :accessor vertex-array)
(:metaclass shader-class))

(defmethod render ((oject simple-object) target)
(let ((vao (vertex-array object)))
(gl:bind-vertex-array (gl-name vao))
(%gl:draw-elements :triangles (size vao) :unsigned-int 0)))

(defmethod render :before ((object simple-object)
(pass shader-pass))

(let ((program (shader-program-for-pass pass object)))
(setf (uniform program "projection_matrix")

(projection-matrix))))

Listing 2: A simple object class and its render methods. The �rst
method tells OpenGL to render a list of vertices. The second method
sends the projection matrix to the GPU via a uniform variable.

render-with thus exists mostly as an entry point to allow shader
passes greater control over the rendering. Typically it will simply
defer to render. This inversion is very important for shader passes
that take all control away from the objects.

This protocol thus allows a great amount of control both over
the e�ective shader code used to render an object, as well as the
behaviour leading up towards the actual draw call for an object.

The overall protocol thus only invokes overhead for the dispatch
of the render-with, render, and shader-program-for-pass generic
functions for each rendered object per frame. All other functions are
only invoked during loading, or in exceptional situations. In our use
of the system so far we have not found this to impact performance
signi�cantly.

5 PIPELINES
Shader passes not only retain information about how objects are
drawn, but also about the input and output textures that a pass
interacts with. For this reason, each shader pass is also a node in a
graph, with distinct input and output ports.

(defclass deferred-render (shader-pass)
((position-map :port-type input)
(normal-map :port-type input)
(albedo-map :port-type input)
(color :port-type output))
(:metaclass shader-pass-class)

Listing 3: An outline of a deferred rendering pass, taking position-,
normal-, and albedo-map textures as input, producing a single color
texture as output.

An example of such a pass is illustrated in Listing 3. The ports
are modelled as slots of the class that carry additional metadata,
requiring a new metaclass. A slot with a port-type will not only
hold a texture for its value, but also retain information about how it
is connected to other passes. Using slots in this manner also allows
us to inherit ports from other classes, and thus combine behaviour
alongside the shader source code.

68 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Nicolas Hafner

For the sake of brevity and ease of explanation, we have left out
the details of texture constraints in these code samples. Neverthe-
less, constraining the features of textures tied to the ports is impor-
tant, and we discuss the technique for dealing with that in section 6.

(defclass shadow-render (shader-pass)
((shadow-map :port-type input)
(color :port-type output))
(:metaclass shader-pass-class))

Listing 4: An outline of a shadow rendering pass, taking into ac-
count the information from a shadow-map to render shadows onto
the output color texture.

(defclass high-pass-render (shader-pass)
((high-pass :port-type output))
(:metaclass shader-pass-class))

Listing 5: An outline of a high-pass renderer, which splices o�
colours of a high intensity into a high-pass output texture.

For instance, the “Deferred Render” pass shown in Figure 2 is
created by combining the passes illustrated in Listing 3, Listing 4,
and Listing 5 through inheritance.

When assembling a pipeline, we can then connect these ports
together, in order to dictate how the various output textures gener-
ated by a pass are used as inputs for other passes. As an example,
the pipeline from Figure 2 is created in Listing 6.

(let ((pipeline (make-pipeline))
(shadow (make-instance 'shadow-map-pass))
(geometry (make-instance 'geometry-pass))
(deferred (make-instance 'deferred+shadow-pass))
(blur (make-instance 'gaussian-blur-pass))
(composite (make-instance 'composite-pass)))

(connect (port shadow 'shadow-map)
(port deferred 'shadow-map) pipeline)

(connect (port geometry 'position-map)
(port deferred 'position-map) pipeline)

(connect (port geometry 'normal-map)
(port deferred 'normal-map) pipeline)

(connect (port geometry 'albedo-map)
(port deferred 'albedo-map) pipeline)

(connect (port deferred 'high-pass)
(port blur 'previous-pass) pipeline)

(connect (port deferred 'color)
(port composite 'color) pipeline)

(connect (port blur 'color)
(port composite 'bloom) pipeline)

(prepare pipeline))

Listing 6: An assembly of the pipeline shown in Figure 2.

The pipeline object itself retains information on the order in
which the passes should be executed, and keeps track of the tex-
tures that are allocated in order to run the passes. How this infor-
mation is computed is described in section 6.

The procedure to actually render objects with this pipeline tech-
nique is then as follows:

1. Create a pipeline object and instances of the desired shader
passes.

2. Connect the ports of the shader passes.
3. Prepare the pipeline to allocate the needed resources.
4. Create instances of the desired objects.
5. Register each object with each pass.
6. Call render on the pipeline with a collection of all objects to

draw.
7. The output texture of the output port of the last shader pass

in the pipeline will contain the �nished frame.
The completed frame can then be blitted onto the screen, or be

used as the input for another computation.

6 ALLOCATION
In order to prepare the shader pipeline, several resources need to
be allocated. Each shader stage needs a “framebu�er,” an OpenGL
resource that allows one to render to o�-screen textures. These
framebu�ers then need to have the required textures to render al-
located as well. As each input and output from a pass can specify
constraints on the features of the texture, these constraints must
be matched up for any connecting edges as well. Finally, in order
to minimise memory usage, we would like to re-use textures where
possible.

Thus, the allocation proceeds in three phases: reconciling texture
constraints on edges between passes, computing how textures are
shared between passes, and �nally constructing all the necessary
resources with the previously gathered information.

6.1 Constraint Merging
OpenGL textures include a massive amount of information[?][?].
When two ports are connected that specify di�erent constraints on
the texture properties, a join must be performed. A wide range of
the texture property values are fundamentally incompatible, mean-
ing that a lot of the logic can simply error. However, other options
require more complicated joining logic. For simplicity and brevity,
we will focus on the join operator for a single texture property
here: the internal format. The internal format is arguably the most
important property. This property speci�es how many colour chan-
nels the texture has, how many bits of precision each channel has,
which format each channel has, as well as whether the texture is
compressed or has sRGB gamma normalisation applied.

The list of speci�ed texture formats is quite large[?]. Unfor-
tunately OpenGL does not give us an interface to handle these
formats in a way that lets us pick the individual features easily.
Instead, each format is represented by a constant whose value has
no relation to the features that format includes. This representation
means that we �rst need to destructure each format name into a
list of features:

• R, G, B, A How many bits to use for each channel, and the
format of the channel (normalised, �oat, integer, unsigned
integer).

ELS 2019 69

Shader Pipeline and E�ect Encapsulation using CLOS ELS’19, April 01–02 2019, Genova, Italy

• depth How many bits to use for the depth channel.
• stencil How many bits to use for the stencil channel.
• shared Whether bits are shared across the channels, and if

so how many.
• featuresWhether the format has compression, sRGB, RGTC,

BPTC, SNORM, or UNORM features.
Once the texture format speci�cations are destructured, we can

perform a join as follows.
1. If the features and sharing are not the same, a join is impos-

sible.
2. The features list of the output spec is set to the same as either

of the specs.
3. If both include a depth component:

3.1. The depth feature is set to the join of both.
3.2. If either include a stencil feature, the stencil feature

is set to the join of both.
4. If both include a stencil component:

4.1. The stencil feature is set to the join of both.
5. If neither include a depth component:

5.1. The R feature is set to the join of both.
5.2. The G feature is set to the join of both.
5.3. The B feature is set to the join of both.
5.4. The A feature is set to the join of both.

6. Otherwise a join is impossible.
Wherein the “join of both” is computed as the join of two channel

formats as follows.
1. If both include the format:

1.1. If the channel format is not the same, a join is impossible.
1.2. The channel bit depth is set to the maximum of both.

2. If one includes the format, that format is returned.
3. Otherwise, the absence of the channel is indicated.
If the join is successful, we then re-encode the texture format

speci�cation into OpenGL’s constant and use this constant in the
real texture speci�cation. Note that this join could produce texture
format speci�cations that are not legal according to the OpenGL
speci�cation. However, this can only occur if one of the speci�-
cations to join is already illegal. We thus deem it unnecessary to
handle such cases.

6.2 Port Allocation
In compilers, allocation of a graph of variables with use-relations
is typically handled with a graph colouring algorithm. However,
since we represent our graph in a di�erent fashion than usual, with
nodes having multiple distinct ports on which edges are connected,
we devised a di�erent kind of colouring algorithm to maximise tex-
ture sharing.

Given a set of nodes the allocation algorithm proceeds as follows.
1. The set of unique texture speci�cations is computed by joining

each port’s texture speci�cation with every other and compar-
ing for equality.

2. For each unique texture speci�cation T:
2.1. The nodes are sorted topologically.
2.2. The number of colours is set to 0.
2.3. For each node N:

2.3.1. For each output port P of N:
2.3.1.1. If P’s texture speci�cation is joinable with T...
2.3.1.2. The number of colours is increased

2.4. An array is allocated to �t the number of colours. Each
index of the array represents a colour and each value at
the index whether the colour is currently available or
unavailable.

2.5. For each node N in reverse order :
2.5.1. For each input port P of N:

2.5.1.1. For each neighbour port O of P:
2.5.1.1.1. If O’s texture speci�cation is joinable with

T...
2.5.1.1.2. and O does not yet have a colour...
2.5.1.1.3. The �rst available colour is assigned to O.
2.5.1.1.4. This colour is marked as unavailable.

2.5.2. For each non-input port P of N:
2.5.2.1. If P’s texture speci�cation is joinable with T...
2.5.2.2. and P does not yet have a colour...
2.5.2.3. The �rst available colour is assigned to P.
2.5.2.4. This colour is marked as unavailable.

2.5.3. For each port P of N:
2.5.3.1. If P’s texture speci�cation is joinable with T...
2.5.3.2. and P has a colour...
2.5.3.3. P’s colour is marked as available.

In other words, the algorithm proceeds backwards from the
last node in the graph, marking output ports of predecessors with
unique colours, then marking unconnected ports with unique colours,
and �nally marking all colours at the node’s own output ports
as available again. We repeat this process for each unique texture
speci�cation, each time ensuring we only consider ports that share
that texture speci�cation.

This algorithm is by no means e�cient, but since pipeline alloca-
tion only has to happen during loading phases, we currently do not
consider this to be a big problem. We also have not performed any
analysis as to whether the algorithm produces optimal allocation
results in every case.

Unfortunately printed documents cannot yet display animations,
so illustrating the algorithm in motion is not possible directly in the
document. However, a brief animation of the pipeline illustrated in
Figure 2 is available online:

https://raw.githubusercontent.com/Shinmera/talks/master/
els2019-shader-pipeline/pipeline-allocation.gif

With this algorithm we reduce the number of necessary textures
to allocate down to �ve. With a primitive allocation of one texture
per output, we would instead end up with seven textures. Note that
the shadow map output is not assigned, as it requires a di�erent
type of texture from the rest – a depth texture. This texture would
be allocated in a second pass.

7 PROOF OF CONCEPT
As a proof of concept we have implemented these protocols and
mechanisms, as well as the passes shown in Figure 2. As the code

70 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Nicolas Hafner

required to do so is quite lengthy and involved, and the graphics
techniques used are beyond the scope of this paper, we will omit
the code. The relevant outline of the passes and the pipeline in-
volved has already been shown in section 5.

Nevertheless, you can �nd the complete code online at the fol-
lowing pages:
https://github.com/Shirakumo/trial/blob/b889d50/deferred.lisp
https://github.com/Shirakumo/trial/blob/b889d50/hdr.lisp
https://github.com/Shirakumo/trial/blob/b889d50/shadow-map.lisp
https://github.com/Shirakumo/trial/blob/b889d50/workbench.lisp

Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7 show the
output textures produced by the various stages for a simple scene.

Figure 3: The output of the geometry pass, producing a “G-bu�er”
composed out of a position- (top left), normal- (top right), albedo-
(bottom left), and specular-map (bottom right).

Figure 4: The depth map produced by the shadow map pass. It
shows the distance of surfaces from the point of view of the primary
light source.

Figure 5: The color map (left) and the high-pass map (right) that
is output by the deferred render pass. It combines the information
from the G-bu�er from Figure 3, the shadow-map from Figure 4,
and information for lights to render an image. Note that due to
gamma adjustments the image appears quite dark.

Figure 6: The blurred high-pass from Figure 5 produced by the
gaussian blur pass. This is used to produce an e�ect called bloom
in the �nal composite pass.

Figure 7: The �nal output frame that is produced by adding to-
gether the bloom texture from Figure 6 and the standard colour tex-
ture from Figure 5. Gamma adjustment and High Dynamic Range
reduction are used for colour normalisation.

ELS 2019 71

Shader Pipeline and E�ect Encapsulation using CLOS ELS’19, April 01–02 2019, Genova, Italy

8 CONCLUSION
We have presented a system to handle the separation between ob-
jects that should be rendered, and the way in which they should
be rendered. By using a protocol for the interaction between such
objects and passes, we are capable of controlling and combining a
variety of rendering behaviours. With an additional protocol and
set of algorithms we also present a high-level view of rendering
pipelines, allowing users to conveniently compose e�ects to pro-
duce complicated scenes.

These protocols and algorithms are largely generic enough that
they could also be adapted for use in other languages and systems.
However, we believe that the Common Lisp Object System gives us
a set of very convenient tools to make everything feel more natural
and more integrated with the rest of the system than other envi-
ronments would allow us to do.

Finally, we have demonstrated the capability of this system by
constructing a real-time rendering system out of individual, modu-
lar pieces of code.

9 FURTHER WORK
Currently there exist several restrictions in our framework.

Most severe is that there is no standardised protocol to com-
municate capabilities and data between objects and passes. This
restriction means that, for instance, an object that does not possess
texturing has no way of communicating this to a shader pass that
might need to render it. Currently this problem is partially solved
by introducing a mandatory superclass that objects need to be a
subtype of, if they want to be renderable under a given pass. This
superclass then loosely de�nes the interaction. However, this addi-
tional class does not solve issues of compatibility of shader code
used by the object and by the shader pass. In order to properly re-
solve this restriction, we currently see two required features:

Shader source merging must be aware of uses-relations, mean-
ing that the code walker must track where variables, functions,
and types are used and reorder the de�nitions and declarations in
such a way that the dependencies are ful�lled. In GLSL, variables,
functions, and types cannot be referenced before they are declared,
requiring this reordering step. With this problem solved, shader
code could be written in such a way to be more amiable towards
combination and manipulation by external code.

GLSL’s limited expressiveness makes it very di�cult to �gure
out relations between code and how to properly combine pieces.
A more high-level language, as is used in other frameworks like
Spark[8] or Shader Components[7], should be introduced to allow
a more convenient way to declare and write shaders, objects, and
passes. With a higher-level language, a compiler could more easily
�gure out how to combine features and reconcile di�erences be-
tween pieces of code.

Another restriction is that there is currently no way to encap-
sulate GLSL code other than associating it with a class, which is a

rather heavy-weight operation. It would be far more useful to intro-
duce a library mechanism that allows the de�nition of standalone
shader functions, which can then be required by shader classes.

10 ACKNOWLEDGEMENTS
I would like to thank Michal “phoe” Herda, Robert Strandh, Michael
Reis, and all the people that will review this paper. Your name could
be here!

11 IMPLEMENTATION
An implementation of the proposed system can be found at
https://github.com/Shirakumo/trial/blob/b889d50/shader-pass.lisp
https://github.com/Shirakumo/trial/blob/b889d50/pipeline.lisp
https://github.com/Shinmera/�ow

REFERENCES
[1] Adrian Courreges. Gta v-graphics study. http://www.adriancourreges.com/blog/

2015/11/02/gta-v-graphics-study/, 2015. [Online; accessed 2019.01.24].
[2] Takahiro Harada, Jay McKee, and Jason C Yang. Forward+: Bringing deferred

lighting to the next level. 2012.
[3] McKee, Jay Harada, Takahiro. Forward rendering pipeline for modern gpus. https://

www.gdcvault.com/play/1016435/Forward-Rendering-Pipeline-for-Modern, 2012.
[Online; accessed 2019.01.24].

[4] Christian Gyrling. Parallelizing the naughty dog engine using �bers. https:
//www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine, 2015.
[Online; accessed 2019.01.24].

[5] Farouk Messaoudi, Gwendal Simon, and Adlen Ksentini. Dissecting games engines:
The case of unity3d. In Proceedings of the 2015 International Workshop on Network
and Systems Support for Games, page 4. IEEE Press, 2015.

[6] Scriptable render pipeline. https://docs.unity3d.com/Manual/
ScriptableRenderPipeline.html, 2018. [Online; accessed 2019.01.24].

[7] Yong He, Tim Foley, Teguh Hofstee, Haomin Long, and Kayvon Fatahalian. Shader
components: modular and high performance shader development. ACM Transac-
tions on Graphics (TOG), 36(4):100, 2017.

[8] Tim Foley and Pat Hanrahan. Spark: modular, composable shaders for graphics
hardware, volume 30. ACM, 2011.

[9] Nicolas Hafner. Object oriented shader composition using clos. In 11 th European
Lisp Symposium, page 80, 2018.

72 ELS 2019

Hierarchical Task Network Planning in Common Lisp: the case
of SHOP3

Robert P. Goldman and Ugur Kuter
rpgoldman@sift.net

ukuter@sift.net
SIFT, LLC

Minneapolis, MN

Conquer(England)

Travel(Normandy,
England)

Encamp(?x)
Pre: In(?x, England)

Take Control(England)
Pre: Ruler(?r, England)

Secure(Boats, Normandy)
Sail(Normandy, Pevensey)
Pre: In(Pevensey, England)

Slay(Harold)
Pre: Ruler(Harold, England)

?r = Harold

Figure 1: Hierarchical Plan for Conquest of England [11]

ABSTRACT
This paper describes the use of Common Lisp (CL) to develop a new
version of the Hierarchical Task Network (HTN) planner, Shop2,
first developed at the University of Maryland (UMD). which we are
dubbing Shop3. We will describe ways in which we have profited
from language features offered by CL to build a more solid, efficient,
yet flexible planning system, review lessons learned and suggest
some best practices. Shop3 is an open source tool made publicly
available by SIFT, hosted on GitHub. It is freely available for use
under the terms of the Mozilla Public License. CL provided a good
foundation for extensibility and refactoring of the Shop2 planner to
support both more flexibility and extensibility and, at the same time,
more usability as a practical tool. By comparison, the Java version of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ELS ’19, April 01–02, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2633324

Shop2 was rigid, and rapidly abandoned after the original developer
left UMD. By then it already lagged behind the CL version in terms
of features because of Java’s rigidity, and poor support for symbolic
programming.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Plan-
ning and scheduling; Planning for deterministic actions; Plan-
ning with abstraction and generalization; Logic programming
and answer set programming; • Information systems → Decision
support systems.

KEYWORDS
Common Lisp, HTN planning, AI Planning, symbolic reasoning,
software abstraction, software modeling, software flexibility

ACM Reference Format:
Robert P. Goldman and Ugur Kuter. 2019. Hierarchical Task Network Plan-
ning in Common Lisp: the case of SHOP3. In Proceedings of ELS ’19: Eu-
ropean Lisp Symposium (ELS ’19). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.2633324

ELS 2019 73

ELS ’19, April 01–02, 2019, Genova, Italy Robert P. Goldman and Ugur Kuter

1 INTRODUCTION
AI planning is the subfield of artificial intelligence (AI) that aims at
automating processes of means-ends reasoning. In general, AI plan-
ning is the problem of finding a sequence of actions that, executed
in a specified initial state, will reach a goal state. This is a prob-
lem with applications to diverse areas including manufacturing,
autonomous space and deep sea exploration, medical treatment,
and military operations, to name just a few.

We describe our ongoing work, over the past two decades, on
the Shop3 planning system, a Hierarchical Task Network (HTN)
planner. Shop3 is based on Shop2, which was originally developed
at the University of Maryland (UMD). In our work we have made
extensive use of Common Lisp (CL) features to extend and harden
the Shop2 code base over the years, culminating in the release this
month of its successor, Shop3.

Our company, SIFT, (|www.sift.net|) is a for-profit research lab,
employing approximately 35 people, with 13 Ph.D.s. We are in
our 20th year, and have offices in Minneapolis, and the Boston,
Washington, and San Diego metropolitan areas. We do contract
research on AI, Computer Security, Formal Methods, and Human-
Computer Interaction, primarily for the US Federal Government.
Funding sources include DARPA, NASA, Department of Energy,
Air Force Research Laboratories, Office of Naval Reserch, etc.

CL provided a good foundation for extensibility and refactoring
of the Shop2 planner and, at the same time, more usability as a prac-
tical tool. By comparison, the Java version of Shop2 was rigid, and
rapidly abandoned after the original developer left UMD. By then it
already lagged behind the CL version in terms of features because
of Java’s rigidity, and poor support for symbolic programming.

We describe ways in which we have profited from language
features offered by Common Lisp to build a more solid, efficient, yet
flexible planning system, review lessons learned and suggest some
best practices. Shop2, and in turn, Shop3 are based on a powerful
Prolog-style logic programming capability for both logical inference
and planning. We will discuss how well-suited CL is for this kind
of symbolic computation in an AI planning system.

Shop3 is available and regression-tested in several CL
platforms, including Allegro CL (https://franz.com/products/
allegro-common-lisp/), SBCL (www.sbcl.org), and CCL (https:
//ccl.clozure.com/). Shop3 is an open source library that is
publicly available through SIFT. The final version of Shop2
is currently available for download from Sourceforge. Shop3
is available from GitHub, through the “shop-planner” group:
|https://github.com/shop-planner/|. It is available for use according
to the Mozilla Public License.

We begin the paper with some background material, first a de-
scription of the problem of AI planning, and more specifically, the
approach of HTN planning. As part of our discussion of HTN plan-
ning, we will review the original Shop2 system, and its history. We
will describe a number of challenges we faced in applying Shop2 to
problem domains, making it extensible in fundamental ways, and
also more efficient. We will describe how we have addressed these
problems and specifically how features of Common Lisp have aided
us. We will conclude with some best practices for use of Common
Lisp for this kind of symbolic computing, and some holes we would
like to see filled to improve the utility of the language.

Figure 2: Delivery planning example.

2 PRELIMINARIES: AUTOMATED PLANNING
We provide a brief introduction to AI planning, largely following the
discussion of Ghallab, Nau, and Traverso [9]. Formally, a “classical”
planning problem involves a state-transition system, Σ =< S,A,γ >
where S is a set of states, A is a set of actions, and γ is a state
transition function, γ : S × A→ S . A planning problem is a triple
P =< s0, Σ,G > where s0 is the initial state, Σ is the state-transition
system, and G ⊆ S is the goal. A plan, or solution, is a sequence of
actions π = a0...an such that γ (γ (γ (s0,a0),a1)...,an) ∈ G. In clas-
sical planning, the state space is factored into a set of propositions,
and every state s ∈ S is a complete truth assignment to the set
of propositions. For example, in a planning problem with a robot,
r, that moves between three workstations, w1, w2 and w3, a state
would be a truth assignment to the three propositions (at r w1),
(at r w2), and (at r w3). In this case, the three are mutually
exclusive, so that there are only three states.

Actions are triples, a = ⟨name(a), prec(a), eff(a)⟩ where the
name is an arbitrary designator, the preconditions, prec(a) spec-
ify conditions under which the action can be executed (making γ
a partial function), and the effects, eff(a) are a factored representa-
tion of the transition function. For example, the action (move w1
w2) would have the preconditions (at r w1) and the effects (and
(not (at r w1)) (at r w2)). In the interests of convenience,
one describes actions using action schemas (macros), for example:

(:action (move ?r - robot ?w0 ?w1 - workstation)
:precondition (at ?r ?w0)
:effect (and (not (at ?r ?w0)) (at ?r ?w1)))

The standard language for describing planning domains (a set
of action descriptions and ancillary information) and problems is
the Planner Domain Definition Language (PDDL)[5, 8, 17]. PDDL
was developed to facilitate the International Planning Competition
(IPC) [12, 17], held in conjunction with the International Conference
on Automated Planning and Scheduling (ICAPS). The move action
definition above is written in PDDL. There are a wide selection of
publicly available benchmark problems that have been used in past

74 ELS 2019

HTN Planning in CL ELS ’19, April 01–02, 2019, Genova, Italy

IPCs. PDDL has multiple sub-languages of increasing expressive
power. We will return to this issue later.

At its core, planning is a graph search problem, and as such
might seem suitable for methods such as Dijkstra’s algorithm, no
worse than O(n2). However, for single source shortest path (SSP),
n is the size of the graph. For planning the input is extremely
compressed, and the state space is exponential in the size of the
input, so conventional SSP algorithms are, in practice, exponential.
Indeed, the planning problem is very hard: intractable even when
the expressive power (domain and problem) are tightly restricted.
See, for example, Bäckström, et al. [1]. Another way of thinking
about AI planning is that it involves synthesizing an open loop
controller for goal reachability.

The IPC has spurred a great deal of advancement in classical
planning since its inception. Planners can now solve very large
classical planning problems, and there are a diversity of differ-
ent planning methods. The most successful approaches have been
based on heuristic search, reduction to propositional satisfiability
(SAT), and local search/constraint satisfaction. However, we cannot
overemphasize the expressive limitations of these classical planners,
which makes them unusable for most practical applications. In the
next sections, we will describe hierarchical task network (HTN)
planning, sometimes also referred to as “decomposition planning,”
which has radically more expressive power.

3 HIERARCHICAL TASK NETWORK
PLANNING

Hierarchical Task Network (HTN) planning addresses many of the
problems of classical, “first principles” planning as described above.
Classical planning, for example, is limited to goals of achievement.
For example, jogging around a track cannot easily be captured as
goal achievement, because the goal state is to end up in the starting
position. Most classical planners cannot effectively plan for mul-
tiple agents, because they only optimize for either plan length or
cost minimality for additive, context independent action costs. First
principles planners also find plans unconstrained by considerations
such as standard operating procedures. Related to this, a first prin-
ciples planner requires a causal theory (preconditions and effects),
whereas an HTN planner can do actions “just because”: e.g., part
of the protocol for treating stroke victims involves giving aspirin,
although we do not have a clear causal theory of its effectiveness.

All of these concerns can be addressed by HTN planning, and
the University of Maryland’s Shop2 planner was the most mature
and complete HTN implementation, so when SIFT was looking for
a planner for applications, that is where we started. Unlike a first
principles planner, an HTN planner produces a sequence of actions
that perform some activity or task, instead of finding a path to a
goal state. An HTN planning domain includes a set of planning
operators (actions) and methods, each of which is a prescription
for how to decompose a task into its subtasks (smaller tasks). The
description of a planning problem contains an initial state as in
classical planning. Instead of a goal formula, however, there is a
partially-ordered set of tasks to accomplish.

Planning proceeds by decomposing tasks recursively into sub-
tasks, until primitive tasks, which can be performed directly using
the planning operators, are reached. For each task, the planner

chooses an applicable method, instantiates it to decompose the task
into subtasks, and then chooses and instantiates other methods
to decompose the subtasks even further. If the constraints on the
subtasks or the interactions among them prevent the plan from
being feasible, the planner will backtrack and try other methods.

Shop2 is an HTN planner that generates actions in the order they
will be executed in the world. Its backtracking search considers the
methods applicable to the same task in the order they are specified
in the knowledge base given to the planner. This feature of the
planner allows for specifying user preferences among such methods,
and therefore, among the solutions that can be generated using
those methods. For example, Figure 2(c) shows a possible user
preference among the three methods for the task of delivering a
box from the University of Maryland (UMD) to MIT.

Consider a Delivery Domain, in which the task is to deliver a
box from one location to another. Figure 2(a) shows two Shop2
methods for this task: delivering by car, and delivering by truck.
Delivering by car involves the subtasks of loading the box to the
car, driving the car to the destination location, and unloading the
box at the destination. Note that each method’s preconditions are
used to determine whether or not the method is applicable: thus
in Figure 2(a), the deliver by car method is only applicable if the
delivery is to be a fast one, and the deliver by truck method is
only applicable if it is to be a slow one. Now, consider the task of
delivering a box from the UMD to MIT and suppose we do not
care about a fast delivery. Then, the deliver by car method is not
applicable, and we choose the deliver by truck method. As shown in
Figure 2(b), this decomposes the task into the following subtasks: (1)
reserve a truck from the delivery center at Laurel, Maryland to the
center at Cambridge, Massachusetts, (2) deliver the box from the
University of Maryland to Laurel, (3) drive the truck from Laurel to
Cambridge, and (4) deliver the box from Cambridge to MIT. For the
two delivery subtasks produced by this decomposition, we must
again consider our delivery methods for further decomposing them
until we do not have any other task to decompose.

During planning, the planner evaluates the preconditions of the
operators and methods with respect to the world state it maintains
locally. It is assumed that planner has all the required information in
its local state in order to evaluate these preconditions. For example,
in the delivery example, it is assumed that the planner knows all
the distances between the any initial and final locations so that it
can determine how long a truck will be reserved for a delivery task.

4 SIMPLE HIERARCHICAL ORDERED
PLANNER (SHOP2)

The original algorithm for Shop2 is based on recursive depth-first
search, and has as its key data structures (1) a stack of open tasks,
(2) a state object that supports mutation and rollback, (3) a plan
list and, (4) a set of variable bindings. A pseudocode version of
the algorithm is given in Algorithms 1, 2 and 3. These are taken
originally from the Shop2 Manual, but the control flow has been
simplified, and the management of variable bindings, which was
suppressed in the original, has been included.

Some notes on the algorithm: the choose operator in the pseu-
docode represents nondeterministic choice, implemented as search.

ELS 2019 75

ELS ’19, April 01–02, 2019, Genova, Italy Robert P. Goldman and Ugur Kuter

Algorithm 1 Planning algorithm
1: procedure Plan(S, t) ▷ state, task
2: return Find plans(S, {t } , ∅)
3: end procedure

In practice, Shop2 uses depth-first search1 so, for example, in Al-
gorithm 3, line 8, choose b ∈ B , what is done is to attempt to
proceed with b bound to the first element of B, and if this fails, to
try again with the next element of B until a solution is found or B is
exhausted, at which time this line of code fails. In practice there will
be something like an OR in the code, and there will be a non-tail re-
cursive call, leaving a new frame on the stack. As one would expect,
difficult search problems – or even degenerate problems involving
no search, but requiring long plans, cause stack exhaustion.

Note also that this involves being able to roll back state changes
that come from operator application when the system backtracks
to an earlier point in the search and consider different alternative
plans. This backtracking is not done on the stack: instead the state
objects are built out of an original state and set of incremental
updates, which are labeled. When the system backtracks, it undoes
changes (by removing updates from the state object), using the
labels in the update sequence.

The query() function in the following is all-solutions Prolog-
style database retrieval (backward chaining). For those familiar
with Prolog, this is similar to a bagof query. The return is a list of
binding sets. Each binding set associates some set of variables with
values (which may be other variables), by unification. The apply()
function returns a new expression that results from applying a set
of variable bindings to an original expression.

We can see from this that the key operations are (1) tree search,
(2) operator application, (3) task reduction, (4) retrieval from
the state database, and (5) unification. All of these operations
involve symbolic computation.

4.1 Issues with Shop2
SIFT has been working with Shop for approximately 15 years now;
we chose it because it was the only open source HTN planner avail-
able, it was relatively efficient and well-tested, and it performed
well in the 2002 IPC – the last IPC in which HTN planners com-
peted [16]. Shop2 also has been used in a number of planning
applications, including recently at SIFT for Air Operations and UAV
planning [14, 15, 18, 19], cyber security [3], cyber-physical systems
[10], planning for synthetic biology experiments [26], and software
vulnerability analysis [13], to name a few. For an earlier survey
of SHOP2 applications, see Nau, et al. [21]. Another advantage of
Shop is that it provides easy call-out to special purpose solvers
through an ability to invoke arbitrary Lisp code. For example, we
used this to invoke code in a navigation library that could generate
route plans, compute distances on the globe, and retrieve ground
elevation information from a GIS to plan safe routes.

Our initial steps working with Shop2 involved modernizing the
code base for use in larger systems. After the modernization, we
built a number of large systems incorporating our version of Shop,

1Although variants, including depth-first iterative deepening and branch and bound
search are also available.

Algorithm 2 Simplified planning search algorithm
1: procedure Find plans(S, T , B) ▷ state, tasklist, bindings
2: if T = ∅ then
3: return () ▷ No tasks: return empty action sequence.
4: end if
5: choose t ∈ T with no predecessors
6: if t is primitive then
7: o ← operator for t
8: if o is applicable in S then
9: S ′ ← result(o, S)

10: T ′ ← T − t
11: P ← Find plans(S ′, T ′, B)
12: return cons(o, P)
13: else
14: return FAIL
15: end if
16: else ▷ t is a complex task
17: < b, R′ >= reduction(t, S)
18: if b is FAIL then
19: return FAIL
20: else
21: B′ = apply(b, B)
22: if B′ is FAIL then
23: ▷ Merge new bindings with incoming.
24: return FAIL
25: end if ▷ Replace t with its expansion R′ in T
26: T ′ ← replace(t, R′, T)
27: return Find plans(S, T ′, B′)
28: end if
29: end if
30: end procedure

Algorithm 3 Task reduction procedure
1: procedure Reduction(t, S) ▷ task, State
2: choose m a method for name(t)
3: ▷ List of bindings from precondition query.
4: b∗ = query(pre(m), S)
5: if b∗ = ∅ then
6: return FAIL
7: else
8: choose b ∈ b∗ ▷ bindings from preconditions
9: R ← task-net(m)

10: R′ ← apply(b, R)
11: return b, R’
12: end if
13: end procedure

and became increasingly aware of issues in programming and us-
ing it. This led us to add features to make it easier to program
(develop new domains and programs) correctly, and to debug. We
rearchitected the Shop2 to Shop3 for two reasons: to make it easier
to incorporate/reuse individual components of Shop in external
systems and to support extending and adapting Shop’s planning
model, by incorporating new input languages, inference methods,
etc. This rearchitecting has also enabled us to incorporate an en-
tirely new search engine into Shop3, in a way that enables us to
better fit search methods to application domains.

76 ELS 2019

HTN Planning in CL ELS ’19, April 01–02, 2019, Genova, Italy

5 SHOP3 ARCHITECTURE
Like much University research software, Shop2 was originally dis-
tributed as a single file, not at all suitable to incorporation in a
larger system and also available in many hard-to-track variants –
approximately one per graduate student! So for our first application
using Shop2, we did a thorough modernization. The first step was
namespacing: creating a SHOP package and identifying Shop2’s API.
Another software engineering chore was to add an ASDF system
definition and decompose the source code into multiple files or-
ganized topically, and by dependency. We originally moved it to
Sourceforge’s subversion server for revision control. Finally, as we
used Shop more and more, we accumulated a large set of regression
tests for the system.

The original monolithic Shop2 system contained at least three dif-
ferent subsystems that were of general usefulness, and that should
be usable separately. See Figure 3 for a diagram of the Shop3 sys-
tem architecture. Two low-level subsystems that could be loaded
independently were the shop3/unifier and shop3/common (state)
systems. The unifier, as the name suggests, provides an implemen-
tation of the unification algorithm [24] over s-expressions, with
supporting data structures for binding, etc. This can be used as a
library independent of the rest of Shop. Similarly, shop3/common
provides an implementation of a logical database supporting change
over time. It contains state data structures (of different forms, offer-
ing different tradeoffs in cost between update and retrieval), with
update and undo operations.

The shop3/theorem-prover provides a Prolog-like logic pro-
gramming framework on top of the state data structures of
shop3/common and the unification algorithm of shop3/unifier.
Like conventional Prolog, the Shop theorem-prover provides Horn
clause deduction, but unlike it, the theorem-prover allows the pro-
grammer to reason about a state that changes over time, forming
a state trajectory. Note that the theorem-prover does not support
temporal logic, but it does allow the programmer to provide Prolog-
style reasoning as a state evolves through changes. Temporal logic
would be an interesting extension, but it remains to be seen how
well it would interact with the changeset-style representation Shop
uses. The shop3/theorem-prover-api provides a programmer-
friendly general query interface to the theorem-prover, an addition
to the more primitive API used by the planner itself.

On top of the theorem-prover and state representation, Shop3
contains a sub-library of “planning operations” that cover the core
operations of primitive task insertion and task reduction we see
in Algorithms 2 and 3. This layer was separated out in order to
support the development of the more general Explicit Stack Search
engine described below in Section 5.2. These operations include
adding an operator/action to the plan sequence, while updating the
state; and replacing a complex task with the task network from a
compatible method.

At the top of the pyramid is the Shop3 system itself, marrying
search with planning operations, theorem-proving, and state update.
The system also provides assorted utilities for visualization, etc.,
including a plan grapher library that can draw a plan derivation
tree using Cl-dot [25] and graphviz [4, 6]. This was a door opened
to us by the modernization of the system, and the interoperability
and supply of libraries enabled by the common adoption of ASDF.

The original Shop2 system had its own idiosyncratic syntax,
which evolved more than being designed. This led to parsing code
that developed into a hard-to-maintain ball of special cases. Also,
the requirement to use that syntax made comparisons with other
planners more difficult, and generally closed off access to the large
number of publicly-available planning models and problems that
have come out of the IPC. Accordingly, we added support for the
PDDL language, as we describe below. A substantial part of this
involved making the input of domains and problems generic and
dispatching on domain type (see below). The theorem-prover’s
behavior was also made generic, which allows Shop3 to support
the different notation for logic used by PDDL and Shop2, and their
different scoping disciplines.

5.1 Object model: Domains
As described earlier, a planning domain is a repository of action
models, and in the case of Shop, also method definitions, and ax-
ioms. Domains capture everything that is common among a set of
related planning problems. For this reason, when we were designing
Shop3 for greater extensibility, subclassing the DOMAIN object class
was the obvious step to take. Figure 4 gives a simplified diagram of
the type lattice around the DOMAIN class.

Domains enable customization of domain and problem no-
tation through generic functions for parsing, theorem-proving,
and search. Figure 4 gives a sense of how this is done. At
the root of the hierarchy is the theorem-prover domain. This
class provides the theorem-proving behaviors through methods
on REAL-SEEK-SATISFIERS-FOR and LOGICAL-KEYWORDP that dis-
patch on the domain and a logical keyword. Definition of such
methods is aided by a DEF-LOGICAL-KEYWORD macro.

The standard Shop3 DOMAIN combines the theorem-prover do-
main with a mixin that stores action definitions to enable state pro-
gression. Examples of customization can be seen in the immediate
subclasses of DOMAIN, including TEMPORAL-DOMAIN, which adds the
ability to have operators with durations, and the LOOPING-DOMAIN,
which adds looping constructs to the Shop3 domain language.

More interesting are the cluster of classes that support PDDL.
The PDDL language has a :requirements construct that allows
features of the language to be enabled separately. The basic lan-
guage supports only simple action schemas with conjunctive pre-
conditions and effects, and untyped variables (implicitly universally
quantified). Various requirement keywords enable the addition of
more complex constructs to the language. For each of these we have
provided a corresponding -MIXIN class (see the left side of Figure 4).
Note the addition of the ADL (Action Description Language) [22]
class, which assembles a bundle of logical operators, quantifiers,
and conditional effects.

5.2 Explicit Stack Search (ESS)
The core of AI planning is search; the search for a path of states from
the initial state to a state that satisfies the goal. For a number of
reasons, we would like to experiment with different search methods,
but the original Shop2 implemented its search process using the
Lisp process stack. This makes it difficult, if not impossible, to
control the search. In general, while using the processor stack as
the search stack provides a convenient and rapid way to implement

ELS 2019 77

ELS ’19, April 01–02, 2019, Genova, Italy Robert P. Goldman and Ugur Kuter

SHOP3

SHOP Common: state objects,
state update functions, state

trajectories.

SHOP Theorem prover
Domain objects, Inference rules, language extensions

and processing

SHOP Unifier: variables, variable bindings,
unification, matching, substitution.

SHOP Theorem prover
API – query functions

SHOP I/O: parsing/loading domains and problems;
pretty-printing data structures Planner operations: task

decomposition/reduction functions, state
progression

(Legacy) search engine Explicit Stack Search (ESS) search
engine

SHOP Plan tree objects,
update functions

SHOP Plan
Grapher

Figure 3: High level Shop3 system architecture. Shaded blocks indicate components directly accessible by programmers. Dark
outlines indicate components that can be loaded stand-alone.

THEOREM-PROVER-
DOMAIN

DOMAIN

LOOPING-DOMAIN

ACTIONS-DOMAIN-
MIXIN

SIMPLE-PDDL-
DOMAIN

ADL-DOMAIN

ADL-DOMAIN-MIXIN

PDDL-TYPING-MIXIN

NEGATIVE-
PRECONDITIONS-

MIXIN

DISJUNCTIVE-
PRECONDITIONS-

MIXIN

QUANTIFIED-
PRECONDITIONS-

MIXIN

CONDITIONAL-
EFFECTS-MIXIN

TEMPORAL-DOMAIN

Figure 4: Object model: domains.

search algorithms, tackling complex search problems requires finer
control than this implementation strategy provides.

To address this issue, we have introduced Explicit Stack Search
(ESS) as an alternative to the standard Shop2 search algorithm. The
first step in doing this was to reify the search engine as a CLOS
object, so that we could use generic function method dispatch
to tailor individual behaviors. The next step was to introduce the
“planning operations” layer (see Figure 3) to tease apart the planning
operations from the recursive function invocations of the stock
Shop2 depth-first search strategy.

To implement ESS, we adopted a technique from the CIRCA
planner [20], and constructed an abstract finite state machine. Each
state in the virtual machine will carry out some computation, update
virtual machine data structures, and then jump to a new state. This
allows easy incorporation of new behaviors. The current version of

Shop3 supplies standard depth-first search, mirroring the original
Shop2 search implementation, and also backjumping [7], which we
are using in recent work on plan repair.

The core data structures for ESS are a search state object, and
the backtrack stack. The search state groups together all of the
information in the state of the search as described in Algorithms
1 through 3 – the current task, the plan so far, the cost, etc. – in
addition to the state of the virtual machine – the mode, unexplored
alternatives to the current decision, etc. The backtrack stack is made
up of two kinds of object. The simplest is a marker, which indicates
a choice point, and is pushed onto the stack whenever there are
unexplored alternatives. The other is one of a set of objects that
are pushed to record the effects of a decision. These objects hold
data: e.g., when a new choice point is reached, ESS must push the
unexplored alternatives from the last choice point. For each class

78 ELS 2019

HTN Planning in CL ELS ’19, April 01–02, 2019, Genova, Italy
START

TEST-FOR-DONE

LOOK-FOR-IMMEDIATE-TASK

unplanned tasks remain

EXTRACT-PLAN

all tasks planned

POP-IMMEDIATE-TASK

PREPARE-TO-CHOOSE-TOPLEVEL-TASK

EXPAND-TASK

BACKTRACK

POP-TOPLEVEL-TASK

UNFOLD-LOOPING-TASK

loop task

EXPAND-PRIMITIVE-TASK

 primitive task

PREPARE-TO-CHOOSE-METHOD

complex task

CHOOSE-METHOD

CHOOSE-METHOD-BINDINGS

DONE

Figure 5: State machine for ESS.

of these objects, there must be an undo method provided, that can
restore the state of the search machine, and of the search itself.

6 SHOP3 IMPLEMENTATION
In this section we discuss a number of miscellaneous topics con-
cerning the implementation of Shop3, and features provided by
and to the community. First, we have worked to clean up the syntax
of the languages for the planner. We have also migrated away from
using lists as the uniform data structure. Finally, we developed
an extensive set of tests and to support it, created a library that
integrates the FiveAM testing library with the ASDF build system.

The original logical language of Shop2 was idiosyncratic in
syntax and in the set of capabilities provided. In Shop3 we provide
standard features of Prolog, including all-solutions meta-predicates,
etc. We also add more debugging features, including the ability for
the programmer to explicitly raise runtime exceptions, singleton
variable checks (for misspellings), and anonymous variables (to
support singleton variable checks). We are gradually adding more
load-time checks to domain definitions, although this is complicated
by Shop3’s support for meta-programming.

Debugging and efficiency have both been improved by extensive
introduction of special-purpose data structures in place of Shop2’s
pervasive use of lists for all purposes. The pervasive use of lists
made it quite difficult, for example, to debug the theorem-prover,
which did not make a clear distinction between binding lists (lists
of variable bindings, representing a single solution) and lists of
binding lists (representing multiple solutions, in each element of
which variables would be bound to different values). The pervasive
use of lists also made Shop2 less efficient. Use of structures for
inner-loop operations (e.g. variable bindings in the theorem-prover)
has provided substantial speed-ups, as well as code that is easier to
understand and maintain, because of fewer quiet failures.

As part of the Shop3 development effort, we developed the
FiveAM-ASDF library. As its name suggests, this provides inte-
gration between the FiveAM Lisp testing library [2], and the ASDF

build system [23]. It enables the programmer to designate a set of
tests to be run as the TEST-OP of an ASDF system, and also provides
conditions for test failures, etc. These conditions are necessary be-
cause the execution of ASDF operations does not provide a useful
return value. This way the system can be tested either interactively,
or one can encapsulate the test operation in a trivial bash script
that will provide a non-zero error code in case of failures, thus
making it suitable for use in a continuous integration framework.
Because we found that errors in test definition could lead to silent
failures, the system also provides the programmer the ability to
specify the number of checks that are expected and FiveAM-ASDF
will raise a (different) condition if an unexpected number of checks
are run. As an aside, we are starting to decompose the regression
tests into multiple sub-systems, as the library of tests has become
so extensive, and testing is trivially parallelizable. The test suite
takes approximately 45 minutes to run for each CL implementation.

7 CONCLUSIONS AND LESSONS LEARNED
We have described our use of CL and its language features to support
extensive symbolic computations in the HTN planning systems
Shop3, and Shop2. CL provided a good foundation for extensibility
and refactoring of these systems, and more usability as practical
tools.

One of the advantages of using CL for an AI planning system
was the use of s-expressions as the universal data structure in the
software. Our experience has been that this can be very convenient
for initial prototyping, particularly because they provide more con-
venient inspection in the debugger, but they should be phased out
rapidly for improving the scalability and modularity in the code. The
foresight of the CL standardizers in providing list-type structures
has been an immeasurable help in this process. Another substan-
tial advantage was s-expressions as a convenient data structure
for symbolic computing. Unless one has built symbolic computing
systems in both CL and a more conventional language like Java or
Python, it may be difficult to appreciate how great a help this is.

Going forward, the addition of rigorous gradual typing to CL
would be very helpful. SBCL provides excellent type inference, but
while it provides very valuable information about correctness, this
is a byproduct of a concern for optimization, and the CL type system
was not designed as a tool for program correctness.

Many of the things we have seen in our code and our prede-
cessors’ in Shop2 may be common informal knowledge, but it is
worth enumerating them so that they can enter the CL community’s
explicit knowledge. Some examples include:

(1) Ad hoc development of domain-specific languages
(2) &allow-other-keys (and often the &key of CLOS) is

an anti-pattern: the maintainer or library user trying
to determine what arguments are supported will have
to traverse class inheritance hierarchies (especially for
initialize-instance), or method dispatch hierarchies,
wasting time, creating confusion, and often leading to errors
only caught at run-time. More specifically, if we have base
class C , and we need to extend it to another class C ′, we
realized that one should never do just that. Instead, factor
out commonalities into a C0, and make C and C ′ both be
children of C0. If we do not, sooner or later we found that

ELS 2019 79

ELS ’19, April 01–02, 2019, Genova, Italy Robert P. Goldman and Ugur Kuter

we would need to add a behavior to C that should not go on
C ′, and then it would be a painful refactoring.

(3) Cascading initialize-instance methods also create con-
fusion and cause issues with maintenance.

A foremost best practice that underlies many of the others is
to assume that the code will break and ask yourself how it can
be debugged, and especially how it can be debugged by others. A
common mistake by the over-confident programmer is to provide
a complex, but elegant structure that resists debugging because of
not asking this question.

SHOP
3

ACKNOWLEDGMENTS
We would like to thank Prof. Dana Nau and his students and post-
docs at the University of Maryland for the original Shop2. John
Maraist for many extensions during his time at SIFT. Rick Freedman,
Dan Bryce, and other SIFT employees for the logo. The authors
would also like to thank the anonymous referees for their valuable
comments and helpful suggestions. This material is based upon
work supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory under Contract
Number FA8750-17-C-0184. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of DARPA,
the Department of Defense, or the United States Government.

REFERENCES
[1] Christer Bäckström, Yue Chen, Peter Jonsson, Sebastian Ordyniak, and Stefan

Szeider. 2012. The Complexity of Planning Revisited-A Parameterized Analysis..
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI
Press, Toronto, Ontario.

[2] Edward Marco Baringer and Stelian Ionescu. [n. d.]. FiveAM. https:
//common-lisp.net/project/fiveam/

[3] Mark Burstein, Robert Goldman, Paul Robertson, Robert Laddaga, Robert Balzer,
Neil Goldman, Christopher Geib, Ugur Kuter, David McDonald, John Maraist,
Peter Keller, and David Wile. 2012. STRATUS: Strategic and Tactical Resiliency
Against Threats to Ubiquitous Systems. In Proceedings of SASO-12.

[4] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. 2003. Graphviz and Dynagraph – Static and Dynamic Graph
Drawing Tools. In GRAPH DRAWING SOFTWARE. Springer-Verlag, 127–148.

[5] Maria Fox and Derek Long. 2003. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. Journal of Artificial Intelligence Research 20, 1 (Dec.
2003), 61–124. http://dl.acm.org/citation.cfm?id=1622452.1622454

[6] Emden R. Gansner and Stephen C. North. 2000. An Open Graph Visualization
System and Its Applications to Software Engineering. SOFTWARE - PRACTICE
AND EXPERIENCE 30, 11 (2000), 1203–1233.

[7] John Gaschnig. 1979. Performance Measurement and Analysis of Certain Search
Algorithms. Technical Report CMU-CS-79-124. Carnegie-Mellon University.

[8] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram,
Manuela Veloso, Dan Weld, and David Wilkins. 1998. PDDL – The Planning
Domain Definition Language. Technical Report CVC TR-98-003. Yale Center for
Computational Vision and Control, New Haven, CT.

[9] Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning: Theory
and Practice. Morgan Kaufmann, San Francisco, CA.

[10] Robert P. Goldman, Daniel Bryce, Michael J. S. Pelican, David J. Musliner, and
Kyungmin Bae. 2016. A Hybrid Architecture for Correct-by-Construction Hybrid
Planning and Control. In NASA Formal Methods, Sanjai Rayadurgam and Oksana

Tkachuk (Eds.). Vol. 9690. Springer International Publishing, Cham, 388–394.
https://doi.org/10.1007/978-3-319-40648-0_29

[11] Ulrich Harm. 2018. Bayeux Tapestry TItuli. http://www.hs-augsburg.de/~harsch/
Chronologia/Lspost11/Bayeux/bay_tama.html

[12] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert, Frederico dos
S. Liporace, and Sebastian Trüg. 2006. Engineering Benchmarks for Planning: The
Domains Used in the Deterministic Part of IPC-4. Journal of Artificial Intelligence
Research 26 (2006), 453–541. http://dx.doi.org/10.1613/jair.1982

[13] U. Kuter, M. Burstein, J. Benton, D. Bryce, J. Thayer, and S. McCoy. 2015. HACKAR:
Helpful Advice for Code Knowledge and Attack Resilience. In AAAI/IAAI Pro-
ceedings.

[14] U. Kuter, R. P. Goldman, and J. Hamell. 2018. Assumption-based Decentralized
HTN Planning. In Proceedings of the ICAPS-18 Workshop on Hierarchical Planning.

[15] U. Kuter, B. Kettler, J. Guo, M. Hofmann, V. Champagne, K. Lachevet, J. Lauten-
schlager, L. Asencios, J. Hamell, and R. P. Goldman. 2019. Profiles, Proxies, and
Assumptions: Decentralized, Communications-Resilient Planning, Allocation,
and Scheduling. In Proceedings of the AAAI/IAAI-19.

[16] Derek Long and Maria Fox. 2003. The 3rd international planning competition:
Results and analysis. Journal of Artificial Intelligence Research 20 (2003), 1–59.

[17] Drew V. McDermott. 2000. The 1998 AI Planning Systems Competition. AI
Magazine 21, 2 (2000), 35–55.

[18] Joseph B Mueller, Christopher A Miller, Ugur Kuter, Jeff Rye, and Josh Hamell.
2017. A Human-System Interface with Contingency Planning for Collaborative
Operations of Unmanned Aerial Vehicles. In AIAA Information Systems-AIAA
Infotech@ Aerospace (2017-1296). AIAA Press. https://doi.org/10.2514/6.2017-1296

[19] David Musliner, Robert P. Goldman, Josh Hamell, and Chris Miller. 2011. Priority-
Based Playbook Tasking for Unmanned System Teams. In Proceedings AIAA.
American Institute of Aeronautics and Astronautics.

[20] D. J. Musliner, E. H. Durfee, and K. G. Shin. 1993. CIRCA: A Cooperative Intelli-
gent Real-Time Control Architecture. IEEE Transactions on Systems, Man, and
Cybernetics 23, 6 (Nov. 1993), 1561–1574. https://doi.org/10.1109/21.257754

[21] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J. W. Murdock, D. Wu,
and F. Yaman. 2005. Applications of SHOP and SHOP2. IEEE Intelligent Systems
20, 2 (March–April 2005), 34—41.

[22] E.P.D. Pednault. 1989. ADL: Exploring the Middle Ground between Strips and
the Situation Calculus. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, Ron Brachman, Hector J.
Levesque, and Raymond Reiter (Eds.). Morgan Kaufmann Publishers.

[23] Francois-René Rideau and Robert P. Goldman. 2010. Evolving ASDF: More
Cooperation, Less Coordination. In International Lisp Conference. ACM Press.
https://doi.org/10.1145/1869643.1869648

[24] J. A. Robinson. 1971. Computational Logic: The Unification Computation. Ma-
chine Intelligence 6 (1971).

[25] Juho Snellman. [n. d.]. CL-DOT – Generate Dot Output from Arbitrary Lisp Data.
http://www.foldr.org/~michaelw/projects/cl-dot/

[26] U.Kuter, R. P. Goldman, D. Bryce, J. Beal, M. DeHaven, C. Geib, A. F. Plotnick,
N. Roehner, and T. Nguyen. 2018. XPLAN: Experiment Planning for Synthetic
Biology. In Proceedings of the ICAPS-18 Workshop on Hierarchical Planning.

80 ELS 2019

Session VII: Racket

Tuesday, 2.4.2019

14:30–15:30 Matthew Flatt: Rebooting Racket (Guest talk)
15:30–16:00 Coffee Break

ELS 2019 81

82 ELS 2019

Session VIII: Ecosystem

Tuesday, 2.4.2019

16:00–16:30 Alessio Stalla: Symbols as Namespaces in Common Lisp
16:30–17:00 Didier Verna: Parallelizing Quickref
17:00–17:30 Lightning talks
17:30 Conference end

ELS 2019 83

Symbols as Namespaces in Common Lisp
Alessio Stalla

alessiostalla@gmail.com

ABSTRACT
In this paper, we propose to extend Common Lisp’s fundamental
symbol data type to act as a namespace for other symbols, thus
forming a hierarchy of symbols containing symbols and so on recur-
sively. We show how it is possible to retrofit the existing Common
Lisp package system on top of this new capability of symbols in
order to maintain compatibility to the Common Lisp standard. We
present the rationale and the major design choices behind this effort
along with some possible use cases and we describe an implemen-
tation of the feature on a modified version of Armed Bear Common
Lisp (ABCL).

CCS CONCEPTS
• Software and its engineering → Modules / packages; Data
types and structures; Semantics.

KEYWORDS
Symbols, Namespaces, Packages, Hierarchy, Common Lisp, ABCL

ACM Reference Format:
Alessio Stalla. 2019. Symbols as Namespaces in Common Lisp. In Proceedings
of the 12th European Lisp Symposium (ELS’19). ACM, New York, NY, USA,
5 pages. https://doi.org/10.5281/zenodo.2648195

1 INTRODUCTION
1.1 Symbols
One of the distinguishing features of Lisp, that has set the language
apart since its inception in the late 1950’s [5], is the symbol data
type. In Lisp, symbols are names for things, including parts of a pro-
gram such as variables, functions, types, operators, macros, classes,
etc. and including user-defined concepts and data. Each symbol has
a name, which is a string, and a property list, an associative data
structure where the language implementation, as well as libraries
and programs, can store data and meta-data related to the sym-
bol or associated concepts. The Lisp reader ensures that, when it
encounters the same symbol name twice, it will return the same,
identical symbol; so, when reading the textual representation of
some source code, the same name appearing as a different string in
several positions in the source text will refer to the same concept
or program element.

Symbols are a data type usually found in compilers and inter-
preters. Lisp exposes the symbol concept to the user of the system

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2648195

and is itself built upon it – it is, in its core, a system for the ma-
nipulation of lists of symbols. This makes programming in Lisp
qualitatively different from other programming languages [3], be
they object-oriented, functional, imperative, and so on. Usually we
tend to concentrate on lists (or, better, on conses) and to forget
about the importance of symbols.

1.2 Packages
Early Lisps had a single namespace for symbols [6]. That is, a single
global hash table that the Lisp reader consults when it encounters
a symbol name: if it’s already present in the table, the associated
symbol is used, otherwise a fresh symbol is created and stored in
the table. This operation is called INTERN. The table itself is called
an obarray in Maclisp [8], Emacs Lisp [2], and perhaps other Lisps.

A single namespace suffers from the possibility of symbol clashes
– that is, two programs assigning incompatible meanings to the
same symbol. Eventually, this problem was addressed in Common
Lisp with its package system [9], derived from an earlier system
introduced in Lisp Machine Lisp [12].

In Common Lisp, packages are objects that map symbol names
(strings) to symbols. More than one package can be defined; in-
deed, the Common Lisp standard defines three built-in packages,
COMMON-LISP for the language itself, KEYWORD for keyword symbols
that are constants that evaluate to themselves, and COMMON-LISP-USER
for user symbols. However, exactly one package is current at any
one time (per thread): it is, by definition, the value of the special
variable *PACKAGE*.

The reader always interns unqualified symbol names in the cur-
rent package. To refer to a symbol in another package, the sym-
bol name is prefixed by the package name followed by a colon –
or two, in certain cases which we’ll explain shortly. For example,
ALEXANDRIA:WHEN-LET.

Packages, like symbols, have a name which is a string. Addition-
ally, packages can have multiple secondary names called nicknames.
For example, the COMMON-LISP package is nicknamed CL. And, just
like symbols in earlier Lisps, packages are registered in a single
global map keyed by their names and nicknames. It is possible to
remove a package from the map, using the DELETE-PACKAGE opera-
tor (which removes at once all the entries referring to that package,
including nicknames). However, the Common Lisp standard does
not specify any meaningful way in which a package object can be
used once it’s been deleted, and it does not define any operator
to put a package in the global map back again. In practice, in a
portable Common Lisp program, a deleted package is no longer
usable in any way.

The package system also acts as a simple but effective read-time
module system. A package can export some of its symbols; other
packages can import them individually or they can use another
package, thus automatically importing all its exported symbols.
The names of non-exported symbols need to be prefixed with two
colons when referring to them from other packages.

84 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Alessio Stalla

2 PACKAGE PROBLEMS
Packages are arguably one of the most criticized (or poorly under-
stood) features of the Common Lisp language:
• One issue is that the package system is not a very advanced

module system, or not much of a module system at all. By
design, it is just a system for organizing names and avoiding
or handling clashes.
• Another issue is that the package system works at read-time,

thus it relies on, and suffers from, read-time side effects [4].
• Then, as we’ve previously said, package names and nick-

names live in a global shared namespace. With the ever-
increasing amount of libraries (the Quicklisp distribution
contains more that 1500 libraries [1]), each defining at least
one package but quite often more than one, the possibility
for package name clashes is real, especially considering the
existence of nicknames which are often short mnemonic
names or acronyms.
• Finally, since packages cannot portably exist as usable objects

outside their global namespace, solutions using temporary
or "unnamed" packages are awkward and feel hacky.

In this article, we’ll focus on the last two issues: a single, global
namespace for package names and nicknames, and the fact that
packages are tied to this namespace.

3 EXISTING EXTENSIONS OF THE PACKAGE
SYSTEM

Naming issues such as potential clashes need not necessarily be
solved with technique alone. Solutions based on social conventions
are often employed successfully. For example, the C language does
not have any provision for namespacing. Developers simply prefix
the names of functions and variables to avoid clashes.

Also, the package system itself natively provides tools for dealing
with naming conflicts, such as the aforementioned nicknames and
the RENAME-PACKAGE function.

Still, a number of extensions to the package system have been
proposed and implemented over the years. We’ll now review a
couple of those.

3.1 Hierarchical Packages in Allegro Common
Lisp

Allegro Common Lisp augments packages with some hierarchical
structure [10]. Taking inspiration from languages such as Java and
C#, it proposes a naming convention according to which package
names are a sequence of names separated by dots.

The hierarchical structure in Allegro is just a naming convention;
it does not mandate correspondence to a directory and file structure,
as in Java. However, the convention is understood and enforced by a
few functions that also allow users to shorten package names when
they have some substructure in common, in a way that resembles
file system paths. For example, (find-package :.test) would
return the package it.alessiostalla.app.test if the current
package were it.alessiostalla.app.

An informal survey by the author revealed that hierarchical pack-
ages appear to be seldom used, if at all, outside the internals of Alle-
gro Common Lisp itself. Interestingly, the same facility exists as an

open-source library by Pascal Bourguignon (https://gitlab.com/com-
informatimago/com-informatimago/blob/master/common-lisp/lisp/relative-
package.lisp).

3.2 Package-local Nicknames in SBCL and
Other Lisps

Other Common Lisp implementations, in particular at least SBCL
[11] and ABCL, allow to define package-local nicknames. That is,
a package, say P, can specify local nicknames for other packages.
When P is the current package, and only then, those nicknames
can be used to refer to the nicknamed packages. Thus, the local
nicknames do not pollute the global package namespace. Therefore,
users can shorten frequently-used package names without fearing
collisions with other unrelated packages that happen to have the
same nickname.

This apparently simple feature is nevertheless quite powerful,
and indeed, from an informal survey by the author of this paper, it
is actively used or at least well regarded by a number of experienced
developers on the Common Lisp Professionals mailing list.

4 SYMBOLS AS NAMESPACES
Let’s now analyze the more radical option of using symbols as
namespaces for other symbols. How would it look like? Is it worth-
while? Is it possible to extend Common Lisp with such a feature and
to deprecate packages while maintaining backwards compatibility
with the Common Lisp standard and with existing Common Lisp
code?

4.1 What We Want to Achieve
We want to use symbols as namespaces for other symbols, and so on
recursively. In other words, we want every symbol to potentially act
as a package. We want these extended symbols to be recognized by
the Lisp reader and Lisp printer. We’ll use the syntax foo:bar:baz
to represent a symbol named baz, which is an external symbol in
the symbol named bar, which is itself an external symbol in the
symbol named foo. So the idea is to extend the Common Lisp syntax
to allow multiple, non-consecutive package markers. According to
the Common Lisp standard, the treatment of tokens with multiple
package markers is undefined and implementation-dependent [7],
so this extended syntax is allowed by the standard. Similarly, we’ll
use two consecutive colon characters to refer to internal symbols.

Symbols that are not interned in other symbols, or in other
words have no parent symbol, are called root symbols. We want to
have exactly one canonical root symbol, that we’ll denote here as
#<ROOT>, such that the syntax :foo represents a symbol named foo
whose parent is the canonical root symbol. Other root symbols can
be created (for example, with the standard function MAKE-SYMBOL),
but only the canonical one gets the special syntax described here.
The canonical root symbol cannot be replaced. It is printed as a an
empty string, thus it cannot be read by itself.

In general, we’ll need to add new operators to our Common
Lisp implementation to support these new features. Rather than
adding them in a new package, we have chosen to intern them in
the SYMBOL symbol, as it will become apparent in the next section.

ELS 2019 85

Symbols as Namespaces in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

4.2 Backwards Compatibility
The idea is to retrofit packages as a facade over namespacing sym-
bols, in order to maintain Common Lisp compatibility for existing
programs that do not make use of, or even know about, our new sym-
bol type. So, our extended symbols will need to retain all the package
features such as exporting, USEing other namespaces, shadowing,
etc. We could leverage the symbols’ property lists for those features,
or we could add implementation-dependent fields to the symbol
type itself. We provide an operator, (symbol:as-package symbol),
that given a symbol will return a package object reflecting that sym-
bol’s name and contents.

Furthermore, since packages can be given nicknames, our new
symbols must support the same feature if we want them to replace
packages. So, it must be possible to intern the same symbol with
different names (aliases) in the same or in different namespaces.
This is an important difference from Common Lisp, where symbols
either have exactly one home package, or they are uninterned. Our
symbols can have multiple aliases in multiple namespaces, but they
always have a name and a parent symbol (or NIL). We provide two
operators:

(symbol:alias symbol alias &optional export)

to create an alias of a symbol in its parent namespace, and

(symbol:remove-alias symbol alias)

to remove an alias. To create an alias of a symbol in a different
namespace, we use the standard IMPORT function, which of course
now works on symbols as well as on packages. Note that the hier-
archical nature of symbols implies that aliases are local, just like
the package-local nicknames extension in SBCL and ABCL.

5 THE ROOT SYMBOL, KEYWORDS AND
TOP-LEVEL PACKAGES: A PROBLEM

It is apparent that keywords and symbols in the root namespace
have something in common. In part this comes from the choice of
syntax: since foo:bar is symbol bar with parent foo, :foo ought
to designate the symbol foo with parent #<ROOT>, just like paths
in a file system. But :foo in Common Lisp is already the syntax
for the keyword named foo. It’s not only a matter of the choice
of syntax, though. Keywords are meant to be read uniformly and
unambiguously no matter what the current package happens to be.
Analogously, one is supposed to be able to reach to the root names-
pace with the same syntax no matter what the current namespace
is. Even not considering syntax, keywords and symbols in the root
namespace appear to be similar beasts.

Another seemingly obvious choice is that legacy Common Lisp
packages – which are inherently top-level, global names – ought
to live in the root symbol, so that package COMMON-LISP is actu-
ally the symbol #<ROOT>:COMMON-LISP, which is then printed as
:COMMON-LISP. Thus the root symbol is the global map that con-
tains all packages, which in standard Common Lisp is an object
that users of the language cannot access.

These two apparently natural choices, however, don’t play well
together. In fact, to preserve backwards compatibility, the Lisp
reader, when searching for a package (say, COMMON-LISP), must
either search it locally to the current namespace (we’ll call this

option L for Local first), or it must search it in the root first, then
in the current namespace (option R for Root first).

Choice (L) implies that, for, say, CL:LIST to be read consistently
everywhere, every package must import the :CL symbol. More gen-
erally, every symbol which denotes a package must be accessible
(imported) in every namespace. But if the symbol, such as :CL, is
also a keyword by design, then it is a constant and it cannot be
rebound, not even locally. This is a strong limitation and a problem
for backwards compatibility, especially for packages with common
names like SEQUENCE, SYSTEM, EXTENSIONS etc. which collide with
symbols in the COMMON-LISP package or with symbols in user code.
Clearly, having packages named by keywords and requiring all
namespaces to import those keywords has heavy usability implica-
tions.

Choice (R) instead implies an inconsistency. In the expressions
CL:X and CL, the two character strings "CL" might be read as differ-
ent symbols: the first as #<ROOT>:CL, the second as, for example,
CL-USER:CL. Also, with that scheme, :KEYWORD would be a symbol
whose namespace is itself, which is confusing, but this is probably
just a minor annoyance.

6 AN IMPERFECT SOLUTION
We can then decide that the root symbol is not the keyword package
after all. This, however, has other problems. In fact, there is a read
inconsistency for keywords. :foo must be read as a keyword at
least for backwards compatibility, but in the expression :foo:bar,
foo is not a keyword, it is symbol FOO in symbol #<ROOT>.

Also, there is still the inconsistency of, e.g., SEQUENCE in the
expressions 'SEQUENCE:COUNT and 'SEQUENCE being two differ-
ent symbols if SEQUENCE is a top-level package, unless the symbol
SEQUENCE is imported in the current package. This is for backwards
compatibility, because if a user evaluates (defpackage foo), Com-
mon Lisp mandates that foo::x refers to the top-level package FOO
no matter what the current package is.

However, there isn’t the additional limitation of keywords being
constants, so SEQUENCE-the-package and SEQUENCE-the-CL-symbol
can be arranged to be the same symbol without drawbacks, by
importing :sequence in CL (or by importing cl:sequence into
#<ROOT>). For system packages, the implementation can probably
arrange things like that automatically, so for users it’s transparent.
For user packages, this cannot be done by the implementation, users
have to write the boilerplate manually if they want to avoid the
inconsistency.

Ideally, if no backwards compatibility were required, we could
mandate that the names of top-level packages be always prefixed by
a colon – as in :cl:count and :sequence:count – unless locally
imported. However, in an existing Common Lisp system, this is
not possible. Legacy compatibility could be turned on and off with
flags, but this still seems a bit of a mess. Things don’t click, they’re
too complex. The beauty of the original idea seems lost.

7 THE REAL SOLUTION
Things flow much better if we take a different route. Namely, that
top-level packages (actually, their names) are not top-level sym-
bols. Instead, let’s make them live in another, non-root symbol, say
:TOP-LEVEL-PACKAGES. The root symbol, then, continues to be the

86 ELS 2019

ELS’19, April 01–02 2019, Genova, Italy Alessio Stalla

home namespace of keyword symbols, that is, the Common Lisp
keyword package, and the only "special" symbol and package in
the system.

So, when it encounters the expression foo:bar, the reader looks
for foo in the current namespace first; if it is not present or it is not
a namespace, i.e. it doesn’t contain other symbols (a distinction that
is necessary to avoid excessively shadowing top-level packages),
then it continues its search in the symbol :TOP-LEVEL-PACKAGES.
An inconsistency can still happen – the expressions foo:bar and
foo referring to different foo symbols – but only if a local symbol
named foo exists and it is not used as a namespace. In that case, it
is reasonable that the same sequence of characters "foo" refers to
different things according to whether it’s denoting a namespace or
a symbol name – after all, that’s how today’s Common Lisp works.

As a minor annoyance, to spell, say, the CL:LOOP symbol in its
absolute form, one must write :top-level-packages:cl:loop;
that is, the abstraction leaks a bit.

8 IMPACT ON COMMON LISP ASSUMPTIONS
The change we are proposing cuts deep in the fundamentals of
Common Lisp and arguably of Lisp as it was first conceived. What
are the consequences?

One area that should definitely be explored as further work
is read-print inconsistencies, as it is apparent from the previous
sections. We haven’t studied the issue enough to report something
meaningful here.

Another problematic impact is the interplay with the function
DELETE-PACKAGE.

8.1 DELETE-PACKAGE
In Common Lisp, DELETE-PACKAGE removes a package with all its
nicknames from the global namespace and renders the package
object unusable in portable code. In our extended Common Lisp,
DELETE-PACKAGE should do the same thing to any symbol.

However, with symbols being potentially imported, exported,
aliased, used as namespaces in several places, to delete a symbol
atomically from the system requires a lock on the whole symbol
system. And, even ignoring concurrency issues, there are new possi-
bilities for failure that are currently absent in Common Lisp. Remov-
ing an alias can uncover a conflict between two used packages, for
example. DELETE-PACKAGE is necessary because packages do not
exist outside their global map; symbols do live just as well without
a parent, and they can be uninterned. Once a symbol is no longer
referenced by any live object it can be garbage collected. So, if our
proposal is to be adopted, DELETE-PACKAGE should be restricted
to work only on symbols and aliases in :TOP-LEVEL-PACKAGES, or
it should be deprecated altogether in favor of REMOVE-ALIAS and
UNINTERN, or both.

9 APPLICATIONS
So far hierarchical symbols might seem just a cool feature, a bizarre
experiment or a hack for the sake of hacking. In our opinion, they
make packages "better citizen" in a world where everything is a
first-class object and can be created, manipulated and discarded
at will. They also arguably (if we don’t consider the backwards-
compatibility complexities) provide a better, more consistent design

of symbols as "things that give names to things", all the way down.
However, they have practical applications, too. Here we propose
one and hint at a few others.

9.1 A File System Facility
Common Lisp’s pathnames are another frequently debated feature
that is known to have made most users scratch their heads in
confusion. Here we propose a simple library that provides an easier
API for basic pathname usage, leveraging hierarchical symbols.
This example will show how hierarchical symbols are a versatile
feature that allows to represent all sort of hierarchical names in the
language and will showcase some of the functions supporting our
new symbols.

The key idea of this small library is to represent pathnames as
symbols. One can mount a physical pathname, with its implementation-
dependent syntax, to a given symbol. Then one can construct related
pathnames by interning symbols in it and so on recursively, without
setting up complex translations, manipulating strings or using the
awkward Lisp pathnames API. When done with it, one can also
unmount a symbol, i.e. remove all filesystem-related information
from it.

So by evaluating (mount 'foo (user-homedir-pathname))
one can represent paths such as 'foo::Downloads::virus.exe
(having readtable-case set to :PRESERVE helps as file systems can
be case sensitive). The pathname of a given symbol can be obtained
with the pathname operation:
(pathname 'foo::Downloads::virus.exe)
=> #P"/Users/alessio/Downloads/virus.exe"

Symbols-as-pathnames can be tested for existence, opened for
reading or writing, and operated upon in all the ways supported
by the native Common Lisp pathname facility.

9.2 FFI and Interoperation
There are other areas where having composite, hierarchical names
can be beneficial. One is, of course, interoperation with languages
that themselves have, or simulate, such names. For example, a Java
FFI could allow the following:
(jffi:import 'java:lang:String) ;optionally :as 'java-string
(jffi:new 'String "a string") ;New object creation
(String::valueOf 42) ;Static method call
(String::toCharArray **) ;Instance method call

9.3 Addressing Other Kinds of Paths
Generally, every time we might want to map paths or hierarchies
to symbolic data, hierarchical symbols can offer an advantage. For
example:
• JSON or XML paths (XPath)
• mapping objects to database systems (e.g., schema:table:column)
• representing URL’s and network path
• invoking remote functions, services, procedures

10 IMPLEMENTATION
An implementation of the above concepts and a few support func-
tions has been realized on Armed Bear Common Lisp (ABCL). ABCL
is a Common Lisp running on the JVM, written in a combination

ELS 2019 87

Symbols as Namespaces in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

of Java and Lisp and with a significant amount of code inherited
from CMUCL/SBCL.

The result is a working ABCL that has the symbol data type
described earlier and fails the same ANSI tests it failed before the
changes. Most modifications involved only 4 files: Symbol.java
(the symbol type), Package.java (the package type), Primitives.java
(primitive functions) and Stream.java (where most of the reader is
defined).

As an additional consequence, ABCL’s serialization of symbols
in FASL files, which was brittle, broke irreparably and was rewritten
to be more solid (basically printing symbols with *print-readably*
bound to T, which causes them to be printed in their absolute form
starting from the root, e.g. :TOP-LEVEL-PACKAGES::COMMON-
LISP::T). However, this causes a certain increase in FASL size and a
deterioration of load times, particularly at startup or when loading
big systems, which are already a pain point in ABCL.

The implementation can be found at https://github.com/alessiostalla/abcl
on the branch hierarchical-symbols.

11 FURTHER WORK
The work here is just a foundation. The implications of hierarchical
symbols in Common Lisp should be analyzed further. In particular,
that there are no read-print inconsistencies in corner cases.

A low-hanging fruit is to enhance our work by providing a
few missing usability features. For example, since symbols can
be aliased, have an :import-from :as option in defpackage/define-
namespace.

A particular area of interest is the porting of the feature to other
Lisp implementations. Implementing it on ABCL has been rela-
tively easy, but it might be just a fortunate case. Also, investigating
whether it is possible to implement this proposal in pure Common
Lisp, with no modifications to the implementation, is a worthwhile
goal.

ACKNOWLEDGMENTS
Thanks to the ABCL developers and the users of the Common Lisp
Professionals mailing list for their insight and experience.

REFERENCES
[1] Zach Beane. Quicklisp beta. URL https://www.quicklisp.org/beta/.
[2] Inc. Free Software Foundation. Gnu emacs lisp reference manual.

URL https://www.gnu.org/software/emacs/manual/html_node/elisp/
Creating-Symbols.html#Creating-Symbols.

[3] Richard P. Gabriel. The structure of a programming language revolution. URL
https://www.dreamsongs.com/Files/Incommensurability.pdf.

[4] Ron Garrett. Lexicons: First-class global lexical environments for common lisp.
URL http://www.flownet.com/ron/lisp/lexicons.pdf.

[5] John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782.
doi: 10.1145/367177.367199. URL http://doi.acm.org/10.1145/367177.367199.

[6] John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962. ISBN
0262130114.

[7] Kathy; et al. Pitman, Kent; Chapman. The common lisp hyperspec - section
2.3.5 valid patterns for tokens, . URL http://www.lispworks.com/documentation/
HyperSpec/Body/02_ce.htm.

[8] Kent Pitman. The revised maclisp manual (the pitmanual), . URL http://www.
maclisp.info/pitmanual/symbol.html#10.9.1.

[9] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital Press, Newton,
MA, USA, 1990. ISBN 1-55558-041-6.

[10] Unknown. The allegro common lisp documentation - packages, . URL http:
//franz.com/support/documentation/current/doc/packages.htm.

[11] Unknown. Sbcl 1.4 user manual, . URL http://www.sbcl.org/manual/#Package_
002dLocal-Nicknames.

[12] Daniel Weinreb. Lisp Machine Manual. Massachusetts Institute of Technology,
Cambridge, MA, USA, 1981. ISBN B0006Y4UVA.

88 ELS 2019

Parallelizing �ickref
Didier Verna

EPITA
Research and Development Laboratory

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
Quickref is a global documentation project for Common Lisp soft-
ware. It builds a website containing reference manuals for Quicklisp
libraries. Each library is �rst compiled, loaded, and introspected.
From the collected information, a Texinfo �le is generated, which is
then processed into Html. Because of the large number of libraries
in Quicklisp, doing this sequentially may require several hours of
processing. We report on our experiments parallelizing Quickref.
Experimental data on the morphology of Quicklisp libraries has
been collected. Based on this data, we are able to propose a number
of parallelization schemes that reduce the total processing time by
a factor of 3.8 to 4.5, depending on the exact situation.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Soft-
ware and its engineering → Software performance; Software
libraries and repositories; • Applied computing → Hypertext
languages;

KEYWORDS
Parallelization, Multi-Threading, Software Performance, Software
Documentation, Typesetting
ACM Reference Format:
Didier Verna. 2019. Parallelizing Quickref. In Proceedings of the 12th European
Lisp Symposium (ELS’19). ACM, New York, NY, USA, 8 pages. https://doi.
org/10.5281/zenodo.2632534

1 INTRODUCTION
Quickref is a global documentation project for Common Lisp [9]
software. It builds a website containing reference manuals for li-
braries available in Quicklisp1. Quickref is freely available2, so
anyone can create a local version of the documentation website for
personal use, but we also maintain a public website documenting
the whole Quicklisp world3.

Quickref itself is actually not much more than a layer of integra-
tion “glue” cadencing the inter-operation of four external software
components (see Section 2). Until recently, it essentially consisted
1https://www.quicklisp.org
2https://gitlab.common-lisp.net/quickref
3https://quickref.common-lisp.net

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2632534

in a big loop, iterating over every Quicklisp library, and sequentially
executing all the steps required in producing the corresponding
reference manual, from downloading the library to actually pro-
ducing an Html �le. Because Quicklisp is quite large (it currently
provides more than 1700 libraries), this process could take between
1h30 and 7 hours on our test machine, depending on the exact
conditions. Even if 7 hours, the worst case scenario, still �ts nicely
into one night of batch processing, it is worth trying to improve
the performance of the system, notably by means of parallelism.
The purpose of this article is to report on this work.

Section 2 describes the tool-chain involved in the generation of
the reference manuals and some important characteristics of the
involved software components. Section 3 presents the experimental
conditions and the various con�gurations used to perform timing
measurements. Section 4 provides and analyzes some preliminary
global measurements, giving us a general idea of what to expect.
Section 5 proposes di�erent parallel solutions, each one coming
with its pros and cons. Finally, after the conclusion, an extensive
discussion is proposed in Section 7.

2 QUICKREF TOOL-CHAIN
Figure 1 depicts the typical reference manual production pipeline
used by Quickref, for a library named foo.

(1) Quicklisp is �rst used to make sure the library is installed up-
front. This is done by calling ql-dist:ensure-installed,
and results in the presence of a directory for that library (a
release in Quicklisp terms) in the Quicklisp directory tree.
Currently, Quickref only considers one system per library,
called the primary system. How exactly this system is com-
puted is unimportant for this paper.

(2) Declt4 is then run on the primary system to generate the doc-
umentation. Declt is another library of ours, written 5 years
before Quickref, but with that kind of application in mind
right from the start. In particular, it is for that reason that
the documentation generated by Declt is in an intermediate
format called Texinfo.

(3) The Texinfo �le is �nally processed into Html. Texinfo5

is the GNU o�cial documentation format. There are two
main reasons why this format was chosen when Declt was
originally written. First, it is particularly well suited to tech-
nical documentation. More importantly, it is designed as an
abstract, intermediate format from which human-readable
documentation can in turn be generated in many di�erent
forms (Pdf and Html notably).

4https://www.lrde.epita.fr/~didier/software/lisp/misc.php#declt
5https://www.gnu.org/software/texinfo/

ELS 2019 89

ELS’19, April 01–02 2019, Genova, Italy Didier Verna

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 1: Reference Manual Generation
Main thread, External Process

Quickref essentially runs this pipeline on every available library
(it currently has the ability to limit itself to what is already installed,
or process the whole Quicklisp world). Some important remarks
need to be made about this process.

First of all, Declt works by introspection: it uses Asdf6’s load-
system function to load the system being processed, which may
involve compiling and loading some dependencies as well as the
system itself. It then introspects the system to collect documen-
tation items, notably by way of the sb-introspect facility from
Sbcl7. Given the size of Quicklisp, it would be unreasonable to
load almost two thousand libraries in a single Lisp image. For that
reason, Quickref doesn’t actually run Declt directly, but instead
uses uiop:run-program to fork an Sbcl script to do it.

Similarly, makeinfo (texi2any in fact), the program used to
convert the Texinfo �les to Html, is an external program written
in Perl (with some parts in C), not a Lisp library. Thus, here again,
uiop:run-program is used to fork a makeinfo process out of the
Quickref Lisp instance.

In light of these remarks, the reader must keep in mind the
following points.
• Declt and Texinfo are treated as monolithic black boxes (in

fact, Asdf as well), that is, we don’t attempt to alter their
operation. Any attempt at parallelization will hence boil
down to scheduling the declt and makeinfo processes in
a speci�c way. Thus, when we speak of “threads” in the re-
mainder of this paper, we actually mean small Lisp functions
that essentially fork external processes and wait for them,
in a loop.
• Because running Declt may require the compilation of Lisp

components, possibly including dependencies, and because
di�erent libraries may share the same dependencies, there is
an inherent concurrency problem in writing the compilation
�les. Care must hence be taken to protect against those
potentially concurrent accesses when needed.

3 EXPERIMENTAL CONDITIONS
3.1 Environment
All benchmarks reported in this paper were collected on a De-
bian Gnu/Linux8 system, version 9.6 “Stretch”. Quicklisp currently
requires Debian 9 for testing, and advertises the list of required
foreign dependencies. This environment hence guarantees that as
many libraries as possible could be handled. All foreign dependen-
cies were pre-installed, most of them already packaged by Debian.
We used Sbcl 1.4.0, cloned from its Git repository and manually
compiled with --fancy (which, among other things, activates multi-
threading).

6https://common-lisp.net/project/asdf/
7http://www.sbcl.org/
8http://www.debian.org

The computer used was a Dell Precision T1600, equipped with
16 GB of RAM, a 120 GB mechanical hard drive and an Intel Xeon
E3-1245 processor. This processor has 4 hyper-threaded cores[7],
so that 8 threads are actually available. Note that as of version 2.4,
the Linux kernel is aware of hyper-threading. Debian 9 includes
version 4.9. Although the various timings reported in this paper
were collected from single runs (as opposed to averaging several
ones), the machine was freshly rebooted in single-user mode, in
order to avoid non-deterministic operating system or hardware
side-e�ects as much as possible.

For the Quickref tool-chain, the following software components
were used: Declt 2.4.1, Makeinfo (texi2any) 6.5, and an up-to-date
Quicklisp version 2019-01-07. This version of Quicklisp contains
1719 libraries. It is worth noting that Quickref currently fails on
less than 2% of those libraries, for various reasons: dependency
problems (foreign or not), compilation problems, Declt problems
etc. These issues are out of the scope of this paper, so we simply
�ltered out the problematic libraries in our reports.

3.2 Con�guration
While Quickref is primarily meant to build a complete documenta-
tion website for Quicklisp, a number of options are available, which
need to be taken into account in our experiments.

3.2.1 Libraries and updating policy. By default, Quickref attempts
to globally update Quicklisp before processing, which is the right
thing to do for the public website. Individual users, however, also
have the possibility to create a local website for their personal
working environment only. To this end, Quickref makes it possible
to only consider the libraries already installed on the local machine
(instead of the whole Quicklisp world), and also to avoid updating
those if that is unwanted. As a consequence, and depending on the
exact situation, documenting a library with Quickref may or may
not lead to downloading some code, and may or may not trigger
some Lisp compilation (dependencies included) before actually
loading and introspecting it.

3.2.2 Cache policy. On several occasions, we observed problems
related to the compilation of common dependencies. One typical
problem is when two libraries depend on a third one, and that
dependency needs to be compiled in two di�erent ways. A global
compilation cache, as provided by Asdf by default is bound to
fail. Another problem (which, at least in our opinion, should be
regarded as a bug) is when the compilation or loading of a library
leads to global side-e�ects on the top-level environment. The latest
example we saw is that of common-lisp-stat, globally changing
the reader’s default �oat format from single-float to double-
float[10]. This kind of behavior is bound to cause problems, espe-
cially when almost two thousand libraries are involved. Because of
that, Quickref now has an option for making Asdf use a di�erent,
local, compilation cache for every documented library.

90 ELS 2019

Parallelizing �ickref ELS’19, April 01–02 2019, Genova, Italy

Makeinfo
40 %

Declt
41 %

Loading
3 %

Compilation
16 %

Figure 2: Time Distribution w/ compilation

3.2.3 Scenarios. In order to take into account all those di�erent
options, we have experimented on 3 di�erent situations.

(1) All the libraries are already compiled, so Declt just needs
to load them. This is the best-case scenario. Also, note that
whether the compilation cache is global or local doesn’t
matter here.

(2) The libraries are not compiled, but a global compilation cache
is used, so that no redundant processing occurs. This should
be regarded as the intermediate, most frequent scenario.

(3) The libraries are not compiled, and local compilation caches
are used. This is the absolute worst-case scenario.

Note that regardless of the scenario, we always process the en-
tirety of Quicklisp (modulo the failures), and the 1719 libraries in
question are already downloaded. Network connectivity is consid-
ered too �uctuating to be included in benchmarks, and besides,
including it would hinder the idea of experimenting in single-user
mode, in order to be as deterministic as possible. Under those con-
ditions, we measured that in the original, sequential version of
Quickref, scenario 1 takes 1h 27m, scenario 2 takes 1h 51m, and
scenario 3 takes 7h 01m.

4 PRELIMINARY ANALYSIS
In order to get a general idea on the behavior of the di�erent soft-
ware components involved, we performed a set of preliminary
measurements, which we partially report and analyze in this sec-
tion. We separately collected Asdf load/compile times, and Declt
and Makeinfo processing times for every Quicklisp library. As of
this writing, the code used to collect that experimental data is avail-
able in the benchmark branch of the Quickref repository. The data
itself is also publicly available9.

4.1 Time Distribution
Figures 2 and 3 depict the time distribution for scenarios 2 and
1 respectively, that is, with a global compilation cache, with or
without compilation. The actual values were obtained by summing
the ones collected individually for each library, but they con�rm the
global timings reported at the end of section 3, which were obtained
in another run of the scenarios. Namely, compilation takes 16m
49s, loading requires 03m 22s, Declt needs 43m 19s, and Makeinfo
runs for 43m 06s. Note that the only measured redundancy here
9https://github.com/didierverna/quickref-benchmarks

Makeinfo
48 % Declt

48 %

Loading
4 %

Figure 3: Time Distribution w/o compilation

Makeinfo
10 %

Declt
10 %

Loading
1 %

Compilation
79 %

Figure 4: Time Distribution w/ separate compilation

is in Asdf load times. Indeed, compilation, Declt, and Makeinfo
processing occur only once per library. However, the load time
measurements include not only the libraries themselves, but also
their dependencies, such that the actual measure for one library
corresponds to the number of times it appears as a dependency,
plus one.

The important information we get is that Declt and Makeinfo
require practically the same amount of time to run in total. By
summing Asdf time and Declt time, we see that in scenario 1 (no
compilation required), Texinfo generation takes 52% of the time,
versus 48% for Html generation. In scenario 2, Texinfo generation
takes 60% of the time, versus 40% for Html generation. We did not
collect numbers for scenario 3 (separate compilation directories for
every library), but we can reconstruct them quite easily. Indeed, the
Makeinfo, Declt, and Asdf load times are the same. The remainder
of the 7h 01m, which amounts to 5h 32m, is thus devoted to (re-
dundant) compilation. In this scenario, shown in Figure 4, Texinfo
generation takes 90% of the time while Html generation involves
only the other 10%.

4.2 Time Shapes
Figures 5 and 6 provide two di�erent views on the Declt processing
real times. The �rst one displays the timings on a logarithmic scale,
library per library (the libraries appear by lexicographic order on the
X axis). The second one provides a histogram of the same data, with
logarithmic scale on both axis. The actual numbers unimportant.
What is important, on the other hand, is the general shape and
characteristics of the data distribution.

ELS 2019 91

ELS’19, April 01–02 2019, Genova, Italy Didier Verna

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600

Te
xi

nf
o

ge
ne

ra
tio

n
/D

ec
lt

re
al

tim
e

(se
co

nd
s)

Libraries

Figure 5: Declt real time per library

0.1

1

10

100

1000

10000

1 10 100

N
um

be
ro

fl
ib

ra
rie

sp
er

1/
2

se
co

nd
si

nt
er

va
ls

Texinfo generation / Declt real time (seconds)

Figure 6: Declt real time histogram

The �rst remark is the very wide range of processing times. They
spread from approximately 1s to 5m 19s. The second remark is that
most of the processing times are short compared to the maximum
value. 75% of the libraries are processed in less than 1.5s, 92% in
less than 2s, and 96% under 2.5s. Only 20 libraries require more
than 5s for processing. Unfortunately, and this is the third remark,
we cannot really take advantage of this knowledge in our parallel
design, because there isn’t any actual probability law underlying
this data distribution. The average time is 1.67s, the median is of
1.23s, but the standard deviation is 7.99, which is meaningless, given
the fact that all our timings are positive. In fact, the reason for this
is that we cannot discard the “aberrant” values as experimental
accidents, because they aren’t: they are reproducible. For example,
the library taking more than 5 minutes of Declt processing is lisp-
interface-library. Further investigation shows that no matter
how many times we repeat the Declt run, the timing will remain
within that order of magnitude. Thus, when a thread is busy running
Declt on that library, it will stay busy for around 5 minutes, a time

during which 180 average libraries could be processed. That is 10%
of Quicklisp!

We have conducted the same analysis for Asdf compile & load
times, Asdf load times only (pre-compiled), and Makeinfo process-
ing times. We do not report the results here. Su�ce to say that in
every case, we note the same kind of morphology: very wide range
of values, high concentration of smaller values with a small, yet
undiscardable number of “aberrations”.

5 PARALLEL SOLUTIONS
As of this writing, the parallel solutions presented below are all
implemented in a Quickref subsystem, automatically loaded when
Sbcl has multi-threading support compiled in. They may be dy-
namically selected and parametrized (e.g. number of threads for
each task) through a set of keywords to the main Quickref entry
point (the build function).

5.1 Solution 1
The �rst proposed solution is presented in Figure 7. This solution
uses only two threads, and takes advantage of the natural sequenc-
ing of operations to establish a shared bu�er of Texinfo �les between
Declt and Makeinfo. The main thread builds the Texinfo �les se-
quentially (in any order). The second thread waits for them, grabs
them (possibly by batches, emptying the shared bu�er in one shot),
and converts them to Html.

5.1.1 Advantages. This solution is very simple to implement. There
is only one shared resource: the bu�er of Texinfo �les. Only two
threads are required, so it can work on older CPU’s (e.g. dual-core
without hyper-threading), or be less demanding on an otherwise
busy or shared computer. Because the libraries are processed se-
quentially by Declt, no concurrent compilation occurs, so this solu-
tion may be used in either of our three scenarios.

5.1.2 Drawbacks. This solution’s strengths �ow from the same
well as its weaknesses. Because only two threads are used, it will
not take full advantage of the available resources. Besides, we know
from Section 4.1 that depending on the scenario, Texinfo processing
takes 48%, 40%, or only 10% of the time. This means that the Html
thread will in general be waiting more than working.

5.1.3 Experimentation. Experimentation with this algorithm con-
�rms our analysis. Scenario one (no compilation) now takes 48m
30s instead of 1h 27m (almost twice as fast). Scenario 2 (global cache
policy) takes 1h 05m instead of 1h 51m (we save roughly 40% of the
time). Scenario 3 (local cache) takes 6h 22m instead of 7h 01m (we
save around 10% of the time).

Note that because the Texinfo �les are completely independent
of each other and have no dependencies, it is straightforward to
add more threads for Texinfo processing (the exact same function
may be spawned multiple times). This, however, would be useless,
as Texinfo processing is not where most of the time is spent. Again,
experimentation also con�rms this. Only in the next solutions will
it become pro�table to parallelize Html generation.

5.2 Solution 2
Solution 2, presented in Figure 8 is a logical extension to solution 1.
This time, the main process spawns several threads building Texinfo

92 ELS 2019

Parallelizing �ickref ELS’19, April 01–02 2019, Genova, Italy

Libraries Declt Texinfo Files Makeinfo HTML Files

Figure 7: Solution 1
Main thread, Html thread

Libraries Declt

Declt

Declt

Texinfo Files Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 8: Solution 2
Declt threads, Html threads

�les in parallel, and several others generating the Html ones. As
before, a shared bu�er of Texinfo �les is used, but compared to
solution 1, there are some notable di�erences or complications.
• Because multiple Declt threads exist, the original pool of

libraries now becomes a shared resource. The Declt threads
must hence synchronize on it as well as on the shared bu�er
of Texinfo �les.
• Contrary to solution 1, the Makeinfo threads must not empty

the bu�er at once, grabbing a whole batch of Texinfo �les
to process. Indeed, we have learnt from Section 4.2 that
the time distribution is not homogeneous, and that some
libraries take an extremely long time to process, compared
to the average. Thus, if we were to grab batches of Texinfo
�les, we would risk an accumulation e�ect, whereby multiple
“short” Texinfo �les would be blocked behind a “long” one,
essentially re-sequentializing Html generation.
• For the exact same reason, it would seem ill-advised to simply

split the initial pool of libraries into as many Declt threads as
there are, and let them process their own batch sequentially.
Instead, each thread will just process one library at the time.

5.2.1 Advantages. This solution will let us �ne-tune the number
of threads devoted to each task, depending on the machine at hand,
or the scenario involved.

5.2.2 Drawbacks. Because the libraries are processed in parallel
by Declt, in no particular order, concurrent compilation of common
dependencies may occur. This solution can thus be safely used in
scenarios 1 and 3 only.

5.2.3 Experimentation. Forti�ed by the time distribution reported
in Section 4.1, we were able to �ne-tune the number of threads in
this solution to match our expectations. For scenario 1 (no compila-
tion), the best results are achieved with the same number of threads
for Declt and Makeinfo, speci�cally 4 and 4, corresponding to the
hyper-threaded quad-core hardware con�guration used in the ex-
periments. It now takes 21m 47s to complete scenario one, which
corresponds roughly to 25% of the original 1h 27m. For scenario 3
(local cache), the best results are achieved with 8 Declt threads and
2 Makeinfo threads. It now takes 1h 51m to complete scenario 3,
which corresponds roughly to 26% of the original 7h 01m.

1 2 3 4 5 6 7 8 9 10 11

N
um

be
ro

fl
ib

ra
rie

s

Batches of standalone libraries (�rst to last)

460

305

237
268

178
162

70

22 10 4 1

Figure 9: Library batches

5.3 Solution 3
Solution 3 is a re�nement of solution 2 aiming at making it work
with scenario 2 (global compilation cache). Remember that the com-
plication comes from two libraries sharing common dependencies.
Any attempt at loading them in parallel could result in the simulta-
neous compilation of the same dependency, followed by concurrent
writing of the same fasl �le. In order to prevent this, we must en-
sure that libraries processed in parallel by Declt do not have any
dependencies in common, or only already compiled ones. We call
those standalone libraries.

This problem is of course closely related to that of topological
sorting[6], with the exception that we don’t need full serialization.
On the contrary, we want to retrieve batches of standalone libraries
for parallel processing. The proposed solution is quite simple. First,
we build a dependency graph of the libraries. The leaves in this
graph do not have any dependencies, so they can be processed
in parallel. We collect them; they constitute our �rst batch. We
remove them from the graph, which leads to a new set of leaves,
constituting the second batch. We repeat this process until the
graph is exhausted. For the curious, Figure 9 shows those batches

ELS 2019 93

ELS’19, April 01–02 2019, Genova, Italy Didier Verna

Library Batch

Batch 1

Batch 2

Declt

Declt

Declt

Figure 10: Solution 3, stage 1
Main thread, Declt threads

in the current Quicklisp distribution. We got 11 batches of 460 to
only 1 libraries, from �rst to last.

In order to adapt solution 2 to this new scheme, a new shared
bu�er is created (see Figure 10). The Declt threads pick libraries
from it instead of from the original libraries pool. The main thread
sends successive batches of standalone libraries to this bu�er, and
waits for them to have been exhausted before sending the next
batch in. The rest of solution 2 is unchanged (in particular, the
Html generation code can be re-used without modi�cation).

5.3.1 Advantages. At the expense of a slightly more complicated
synchronization logic, this solution may be used in any of our 3
scenarios. In the current status of Quicklisp, the dependency graph
is relatively small (less than two thousand nodes), which means that
the additional computation time required to handle it is negligible
compared to the 21m 47s of our current most optimistic situation.

5.3.2 Drawbacks. Before sending the next batch in, the main thread
must wait for all libraries in the current batch to have been entirely
processed by a Declt thread; not just have been picked up by one
of them. At a �rst glance, this may not appear as a serious issue
because we only have 11 batches and a few threads handling them.
However, remember again from Section 4.2 that some libraries will
take a very long time to process. If, for example, such a “long”
library is part of a small batch, the batch will be quickly emptied,
and all Declt threads will essentially become dormant until the
“long” library is treated. This is yet another form of accumulation
e�ect that can potentially hinder the parallelization.

5.3.3 Experimentation. Because the time required to maintain the
dependency graph is negligible, this solution is not expected to
make much di�erence in scenarios 1 (no compilation) and 3 (local
cache), as it would boil down to handling the libraries in a di�erent
order. For scenario 2, the best result was obtained with an equal
number of threads for Declt and Makeinfo, namely, 4 of each (again,
corresponding to the hyper-threaded quad-core hardware con�g-
uration used in the experiments). There, the overall computation
time fell down to 29m 21s, that is, 26% of the original sequential
time. Given the time distribution in Figure 2, we also tried matching
that proportion, for example with 5 Declt threads and 3 Makeinfo
ones. We only got similar (inconclusive) result only di�ering by
less than 5%.

6 CONCLUSION
As mentioned in the introduction, the absolute worst case scenario
for Quickref, which is to build the complete Quicklisp documenta-
tion from scratch, takes around 7 hours on our test machine. Even
if such a duration may appear reasonable for batch processing,
we still believe that parallelization is not a vain endeavor. First of
all, the ability to use Quickref interactively (creating for example
one’s own local documentation website) makes it worth improving
its e�ciency as much as possible. Secondly, Quicklisp itself is an
ever-growing repository (monthly updates usually add at least a
dozen new libraries to the pool), and so is the time to generate the
documentation for it.

In this paper, we have devised a set of parallel algorithms, and
experimented with them in di�erent scenarios corresponding to
the typical use-cases of Quickref. On our test machine, we were
able to reduce the required processing time roughly by a factor of
4 compared to the naive sequential version, which is already quite
satisfactory. The absolute worst-case scenario fell under 2 hours,
and the most frequent one under half an hour. For all that, and in
spite of the fact that gracefully handling concurrency is always
a tricky business, our parallel solutions remain quite simple. The
implementation of solution 3, for example, requires only 3 shared
resources (2 bu�ers and a counter), 2 mutexes and 3 condition
variables. It was implemented directly with Sbcl’s multi-threading
layer, without resorting to higher level libraries.

This work also lead us to perform various preliminary measure-
ments and analysis on Common Lisp libraries (compilation and
load time, Declt and Makeinfo run time, dependency graphs, etc.).
As mentioned before, the collected experimental data and their in-
terpretation is publicly available. We think this data could be useful
for other projects, and we already know for a fact that the current
Texinfo maintainers are interested. Only a small part of those re-
sults have been presented in this paper. We are con�dent the rest
will be extremely useful for future re�nements. Indeed, there are
still many things that can be done to improve the situation even
more.

7 DISCUSSION & PERSPECTIVES
7.1 Alternative Solution
Yet another, alternative, parallel solution exists, depicted in its en-
tirety in Figure 11. This solution consists in processing the libraries
in parallel, yet, without breaking the Declt / makeinfo chain. Mul-
tiple threads (8 would probably be an appropriate number on our
test machine) pick libraries to process, and sequentially run Declt
followed by Makeinfo on them. As solution 2 (Section 5.2), this
algorithm can be made to work on scenarios 1 and 3 only, or, as
solution 3 (Section 5.3) can be combined with library batches in
order to also work on scenario 2. This is what Figure 11 depicts. In
the future, and mostly out of curiosity, we may experiment with
this solution.

Note however that we don’t expect it to make much di�erence
compared to solution 3. In solution 3, we have indeed fewer threads
picking libraries up for Declt processing, but on the other hand,
these threads also return more quickly to the library pool / batch,
since they are not in charge of Makeinfo. In fact, our gut feeling is

94 ELS 2019

Parallelizing �ickref ELS’19, April 01–02 2019, Genova, Italy

Library Batch

Batch 1

Batch 2

Declt

Declt

Declt

Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 11: Alternative Solution
Main thread, Declt & Makeinfo threads

that solution 3 may remain slightly better, as it is probably more
gentle on the overall waiting times.

7.2 Dependency Management Issues
Dependency management, required by solution 3, is a relatively
fragile mechanism. Currently, we base our knowledge of depen-
dencies on static information provided by Quicklisp directly, more
speci�cally, the required-systems slot from the ql-dist:system
class. This information is based on Asdf’s depends-on, defsystem-
depends-on, and also comes from observing the state of the envi-
ronment before and after loading the library.

The reliability of that information is somehow relative, however.
Any inaccuracy in that information can potentially lead to a cor-
rupted dependency graph, in turn risking unprotected concurrent
compilation. Here is, for example, one such scenario, reported by
the author of Quicklisp. This problem is currently known to a�ect
a couple of libraries.

Consider systems A and B, where A requires B to build. When
Quicklisp test-builds A, the A prerequisites are built in such a
way that B also successfully builds to satisfy A’s requirements.
But when Quicklisp test-builds B on its own, the environment is
di�erent in a way that precludes B from building. In that case,
the metadata in Quicklisp speci�es that A requires B, but B is
not listed at all, because it does not build on its own.

7.3 Library Ordering Re�nements
In Section 5.3, we introduced the idea of library batches, that is, sets
of libraries the loading of which wouldn’t entail any compilation
con�icts, and we mentioned the need to wait for batch exhaustion
before sending in the next one. This requirement, which is a lim-
itation, actually comes from the fact that only static information
(namely, the dependency relations) is used to create the batches in
question.

It is however possible to re�ne this idea. Indeed, the most perti-
nent information for us is not that library 1 depends on library 2, but
that the compilation of library 2 is over. In other words: concurrent
compilation is problematic; concurrent loading is not.

In order to improve on solution 3, we hence need one additional
piece of (run-time) information: we need to be noti�ed when a Declt
thread has �nished processing a library. The re�nement can then
go as follows. We create the same dependency graph as before, and
also initialize the library queue with the �rst batch as before (the

libraries with no dependencies), but this time, without removing
them from the graph. From now on, as soon as a library is done
processing by a Declt thread, we remove it from the graph. Any
new leaf in the graph stemming from that removal can then safely
be pushed immediately to the library queue.

An even better re�nement would be to not wait for Declt to �nish
processing, but only for Asdf to �nish compiling (this would require
a communication channel between the main thread and the external
Declt process though). This re�nement has not been implemented
yet, but it is a high priority, as we expect a somewhat substantial
gain from it. Note also that it can be used in the alternative solution
proposed in Section 7.1.

Currently, our dependency graph is implemented as a hash ta-
ble of adjacency lists[3]: the hash keys are the library names, and
the hash values are the lists of dependencies. Another possible
(and classical) implementation consists in using an adjacency ma-
trix[1], a potentially more compact representation. Whether one
representation would be more bene�cial than the other is currently
unknown. In particular, more investigation on the dependencies
morphology should be conducted, notably to discover whether the
adjacency matrix would risk being sparse or not (very likely). In
any case, the choice of representation is not expected to have much
impact on the performance, again, because the dependency graph
is relatively small (less than two thousand nodes), in front of at
least 20 minutes of total processing.

7.4 CPU vs. I/O Consumption
While the performance improvements obtained from solution 1 are
to be expected, getting only an improvement factor of 4 in solution
2 or 3 may appear somewhat surprising, even disappointing, espe-
cially since our test machine has 8 virtual cores (4 hyper-threaded
actual cores). Of course, a factor of 8 would be unrealistic. Studies
(from Intel or otherwise) have shown that an improvement of 30%
is not unreasonable to expect from hyper-threading[2, 11]. The
problem we have here is the fact that both Declt and Makeinfo are
treated as monolithic black boxes, so we don’t have any control on
their CPU vs. I/O consumption, an otherwise important aspect of
parallelization.

Declt works in two stages: �rst, an abstract in-memory repre-
sentation of the documentation is constructed by introspecting
the library. Next, the Texinfo �le is generated from that abstract
representation. The �rst stage is CPU-intensive, the second one is

ELS 2019 95

ELS’19, April 01–02 2019, Genova, Italy Didier Verna

−3

−2

−1

0

1

2

3

4

0 200 400 600 800 1000 1200 1400 1600

D
ec

lt
/M

ak
ei

nf
o

re
al

tim
e

ra
tio

s(
lo

g)

Libraries

Figure 12: Declt / Makeinfo comparative timings

more pressing on I/O. On top of that, remember that the library
needs to be loaded by Asdf �rst, possibly with some compilation.
This will also entail several CPU or I/O intensive phases.

It turns out that Makeinfo works in a similar fashion, at least for
Html production (for Pdf, TEX is used). The �rst stage reads the
Texinfo �le into an abstract in-memory representation. This stage is
written in C, with a Perl interface. Then, the abstract representation
is altered in various ways, and the Html �le is �nally created. This
last stage is entirely done in Perl, and (according to the current
Texinfo maintainers) is probably much slower than the previous
ones.

Having no control over these di�erent processing phases is un-
fortunate, and is likely to be the cause of the “25% threshold” that
we seem to reach. It may very well happen, for instance, that regard-
less of the number of threads that we have, they all end up in an I/O
phase at the same time, essentially waiting on the same disk, while
subsequent CPU-intensive computation could have been started.
Improving that situation would require cracking the Declt and
Makeinfo “black boxes” open, possibly even the Asdf one, in order
to introduce parallelism at a lower level. Although we already have
some ideas about this, it would be a completely di�erent project.

7.5 Scheduling
In addition to the points raised in the previous sections (the idea of
library ordering in particular), the general question of scheduling
could be raised. For example, we could get inspiration from the
operating system theory, and think of improving things by mini-
mizing the waiting time in the various queues, as the SJF (Shortest
Job First) does in process scheduling[8]. The problem here is to
get a notion of what makes for the complexity (hence the time) of
the various tasks. Very preliminary investigation gives a somewhat
pessimistic impression. For example, the collected experimental
data shows that there is no correlation between Declt and Makeinfo
processing time (see Figure 12). For some libraries, Declt takes more
time than Makeinfo; for some others, it is the other way around,
etc. In the worst case scenario, we would need to run Quickref and
collect the data in question (which we did for this article), and use

it on the next Quicklisp release, hoping that the situation didn’t
change too much.

7.6 SSD Technology
Finally, note that the validity of the present study is highly de-
pendent on the fact that our test machine was equipped with a
traditional, mechanical hard drive. We haven’t had the opportunity
to experiment with SSD (Solid State Drive[4]) technology yet, but
their dramatically quicker access time and lower latency[5] is very
likely to rede�ne the parameters of our study.

ACKNOWLEDGMENTS
The author would like to thank Zach Beane for his feedback on how
Quicklisp handles dependencies across libraries, and Karl Berry,
Gavin Smith, and Patrice Dumas for their insight into the inner
workings of the Texinfo system.

REFERENCES
[1] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.

De�nition 2.1, p. 7.
[2] Shawn D. Casey. How to determine the e�ectiveness of hyper-threading tech-

nology with an application. Intel Technology Journal, 6(1), 2011.
[3] Thomas Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. In-

troduction to Algorithms. The MIT Press, 2009.
[4] Neal Ekker, Tom Coughlin, and Jim Handy. An introduction to solid state storage.

SNIA White Paper, January 2009.
[5] Vamsee Kasavajhala. Solid state drive vs. hard disk drive price and performance

study. Dell Technical White Paper, May 2011.
[6] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, 1968.

Section 2.2.3.
[7] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty,

Alan J. Miller, and Michael Upton. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal, 6(1), February 2002.

[8] Andrew S. Tannenbaum and Herbert Bos. Modern Operating Systems. Pearson,
4th edition, 2014. Section 2.4.

[9] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[10] Didier Verna. Standard i/o syntax, and the robustness principle. https://www.di-
dierverna.net/blog/index.php?post/2017/10/27/Standard-IO-syntax-and-the-
Robustness-Principle, November 2017. Blog Entry.

[11] Duc Vianney. Hyper-threading speeds linux. https://www.ibm.com/
developerworks/library/l-htl/index.html, 2003.

96 ELS 2019

ELS 2019 97

98 ELS 2019

	Preface
	Message from the Program Chair

	Organization
	Programme Chair
	Local Chair
	Programme Committee
	Sponsors

	Invited Contributions
	The Lisp of the Prophet for the One True Editor – Stefan Monnier
	20 More Years of Bootstrapping – Christophe Rhodes

	Guest Talk
	Rebooting Racket – Matthew Flatt

	Program overview
	Session I: Emacs Lisp
	Pattern-Based S-Expression Rewriting in Emacs Ryan Culpepper

	Session II: Implementation
	Implementing Baker’s SUBTYPEP decision procedure Léo Valais, Jim Newton and Didier Verna
	make-method-lambda revisited Irène Anne Durand and Robert Strandh

	Session III: Metaprogramming
	Finite Automata Theory Based Optimization of Conditional Variable Binding Jim Newton, Didier Verna
	Lazy, parallel multiple value reductions in Common Lisp Marco Heisig

	Session IV: Code as Data
	Working with first-order proofs and provers Mikhail Raskin and Christoph Welzel
	Plagiarism Detection for Lisp António Leitão

	Session V: Bootstrapping
	Bootstrapping Common Lisp using Common Lisp Irène Anne Durand and Robert Strandh

	Session VI: Lisp in Action
	Shader Pipeline and Effect Encapsulation using CLOS Nicolas Hafner
	Hierarchical Task Network Planning in Common Lisp Robert P. Goldman and Ugur Kuter

	Session VII: Racket
	Session VIII: Ecosystem
	Symbols as Namespaces in Common Lisp Alessio Stalla
	Parallelizing Quickref Didier Verna

