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Invited Contributions

Project Oberon: A Late Appraisal

After ETH’s success with Pascal in the 70’s, programming languages like Modula-2, Oberon,
and Lola in the 80s and 90s served the purpose of codesigning, pioneering personal worksta-
tions such as Lilith and Ceres and were also used in teaching generations of students.

Toward Safe, Flexible, and Efficient Software in Common Lisp

Common Lisp is renowned for its ability to express safe, flexible, or efficient code. However,
these characteristics are often at odds with one another, especially in practical software co-
development settings. Coalton is an embedded language within Common Lisp that leverages a
Haskell-like type system to prove type safety of a program and performs a variety of type-based
optimizations. Coalton also permits new abstractions that are difficult to express in ordinary
Common Lisp. We discuss Coalton and its use at two commercial organizations.

Is Lisp Still Relevant in the New Age of AI

Lisp owes its existence and popularity to early AI research. At one time, the entire AI world
revolved around Lisp, which provided an enormous amount of energy for the language’s de-
velopment and for pioneering technologies in compiler design, language innovation, and high-
performance hardware (such as the Connection Machine). However, in today’s AI landscape,
Lisp is nowhere to be found. Instead, languages like Python—many of whose ideas are bor-
rowed from Lisp—have become the mainstream tools for modern AI.

This raises a key question: What made Lisp so relevant during the first AI revolution but
seemingly irrelevant in the second? Is there still a place for Lisp in this new AI era? If so, what
should the Lisp community focus on to re-enable its relevance?
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Growing Your Own Lispers — An Experience Report
Michał "phoe" Herda

mhr@keepit.com
Keepit

Wojciech S. Gac
wga@keepit.com

Keepit

Abstract
Choosing Lisp as a primary programming language is a bold step
for a company to take. Basing one’s success on a non-mainstream
language with relatively low profile, even among CS students and
graduates, can seem like skating on thin ice. Lispers themselves
tend to flock around such companies — which, given their relative
scarcity, is a fairly reliable mechanism for getting Lisp programmers
in touch with Lisp employers. We found that the intersection of
company culture, specificity of work, and compliance requirements
creates a pressure to hire Lispers locally, but the local talent pool
seems to have been exhausted.

This report tries to encapsulate the structure, execution, and
general mood of a Common Lisp internship program launched at
our company in late 2024. Our preliminary conclusions at the end
of the program? Filter candidates for a mixture of technical acumen
and good communication skills, provide plenty of programming
tasks from the very beginning, be prepared to underestimate the
speed at which interns solve problems, improvise locally, but plan
globally.

CCS Concepts
• Social and professional topics → Computing education; •
Human-centered computing → Social content sharing; • Soft-
ware and its engineering→ General programming languages.

1 About Keepit
Keepit is a cloud backup company. We started operation in 2012.
We target multiple cloud platforms, among others, Microsoft 365,
Google Workspace, Zendesk, and Salesforce. Over the years, the
company has evolved greatly to accommodate the growing diversity
of supported cloud solutions and the increasing sophistication of
our clients’ needs. Needless to say, a large part of this growth has
been the restructuring and rethinking of our own approach to
business problems.

Our basic cloud backup offering involves collecting daily snap-
shots from thousands of end users — our customers’ employees —
frequently referred to as seats; multiplied by hundreds of companies
choosing our services, this combines to produce a huge amount of
data. Add to this the ability to quickly browse and search across
years of incremental backups, seamlessly access historical versions
of files, archives, emails, etc. and you might begin to appreciate the
complexity of the technical problems this entails.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’25, Zurich, Switzerland
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.15424521

Aside from data volume, another big challenge is flexibility and
the ability to evolve. As customers internalize the fact that their
data are taken care of and the integrity of these data is ensured,
they start wanting to do things with them. It’s good to be able
to second-guess the customers’ needs, but it’s even better to let
them tell us what they want and try to address their wishes. This
won’t work when the product structure is too rigid, nor when the
technology chosen is too inflexible with respect to exploration and
change.

Since its inception, Keepit has experimented a lot, trying to find
our own formula for success. From having our own data centers,
to building highly optimized software components, to mistrusting
established “best practices”, and following our own intuitions (and
calculations). In those formative years, the company developed
a utilitarian approach to software, aggressively rewriting and re-
architecting parts of our system whenever need arose.

1.1 Architecture Overview
A brief tour of Keepit’s current technical architecture is in order, to
give the reader some idea of how we manage backups.

Going from the outside in, the first components we see are the
so-called Cloud Connectors. They are written in a combination of
a specialized DSL and pure C++. They target specific cloud services
via their published APIs and perform a wide range of operations,
including authorization, listing, and downloading of user data at
scheduled intervals and restoring on demand. Next up is OS3 (Object
Store v3). It is a home-grown file system/object store responsible
for physically storing backup snapshots. As can be surmised, it is
the third and most stable in a chain of rewrites and refinements.
In many respects this is the part of our system that is the most
hardware-conscious and low-level, hence it is also written in C++.
At the time of writing, the production deployment environment for
OS3 involves storage racks composed of large numbers of 7200 rpm
HDD drives. The choice of older, but battle-tested technology has
been driven largely by trying to find the sweet spot between cost,
performance, and reliability. The trio of low-level systems written
in C++ is topped by BSearch — our comprehensive search tool able
to reach into backup snapshots and look for keywords, patterns
and text. In other words, the user can search the past (or rather
different versions of the past), not just the present.

The complete backup system is orchestrated by Buslog (short
for Business Logic). Written in Common Lisp, it is the glue that
keeps things together, handles scheduling, moving data around,
data consistency checks, invoicing, logging, notifications, and much
more. It is the primary target of the majority of API requests that
our system accepts. And it is by far the single most complex part
of the entire Keepit architecture. Its functionality is complemented
by two other Lisp components — SImport and SReimport. Their
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responsibilities focus primarily on importing all kinds of search-
enabled metadata to BSearch, based on periodic difference analysis
of incoming backup snapshots.

The system also features a proxy component (handling API call
authentication and proper redirection), transform caches responsi-
ble for generating and serving documents, and e-discovery tools.
Production deployments of the Keepit system include a web fron-
tend application and a public API for customers willing to work
on their own integrations. Figure 1 gives a visual overview of the
system architecture. Figure 2 outlines the flow of data within our
system.

Figure 1: Keepit architecture

1.2 Why Lisp?
As the above architecture rundown demonstrates, backend compo-
nents have been developed primarily in two programming lan-
guages — Common Lisp and C++. The rationale behind these
choices is fairly simple. There was a clear need for a performant
low-level language with proven track record of implementing high-
speed applications running close to the metal. There was a similarly
clear requirement for a versatile and high performance language for
just about everything else, that would facilitate adaptation, change,
and experimentation, while also promising stability.

In 2012, when crucial technological decisions were being made,
the programming language landscape was not as rich as it is today.

Figure 2: Data flow in the Keepit system

Moreover, there was another constraint on the selection process;
namely, to be considered, a language had to have had at least 10
years of presence on the market until that point and would need to
be maintainable over the coming 20 years. The argument being that
10 years is a sufficiently long period for a technology to more or
less prove its usefulness, outlive the initial hype and ensure some
amount of stability of the toolchain. In 2012 not many languages fit
the bill and so it came to pass that C++ and Common Lisp became
Keepit’s choices.

To make the above argument more concrete, it might be inter-
esting to ask a couple of “why not X?” questions. Java, for instance,
had had quite enough exposure and testing by that time, but the
performance characteristics of JVM were deemed too unpredictable.
Go (2009) and Rust (2012) were too young to meet the stability
requirements. Python had at least two major downsides at that
time — relatively poor performance in general and the GIL (Global
Interpreter Lock) making multithreaded programs inefficient in
particular.

In retrospect, and taken on technical merits alone, Common
Lisp seems to have completely redeemed the trust the technical
leadership of Keepit had placed in it. The ability to connect to a
system, inspect its state, alter its behavior or step through a piece
of code in the middle of a production issue, helped fix many subtle
bugs (some of them only materializing above certain thresholds of
system load). In many areas of the system, initial code had been
written in a more permissive, generic style, but Common Lisp’s
type system allowed us to incrementally tighten security in those
areas as the system matured. The ability to compile into native code
has enabled good and predictable performance for the components
written in this language.

2 Into the Wild — The Internship
Around mid-2024, an idea started to form. We had a somewhat
unsettling sensation that the two of us — the authors of this paper
— were among the last Lispers in the region, available and willing
to join the Keepit office in Kraków, Poland. With ambitious growth
plans set up for the years to come, the company did not have a clear
path in sight to scaling up the Lisp department.We started bouncing
around the idea of “growing our own Lispers” as an alternative to
finding existing ones. At first it was something of a loose thought,
but quickly took on a more serious tone.
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In one meeting with higher management the idea was presented,
received enthusiastically, and subsequently greenlit for implementa-
tion. When laying out plans for the upcoming program, we needed
to account for the time required to teach newcomers Common Lisp
essentially from scratch. Typical internship programs take around 3
months to complete. We figured we would need additional 2 months
to cover the essentials of Common Lisp and still be able to fit some
time for work in the company codebase. Hence we arrived at the
duration of 5 months.

Another vital question to address was the number of partici-
pants we wanted to recruit. We had to operate within two main
constraints. On the one hand, we wanted to have sufficiently many
people to make the whole program worthwhile. We estimated that
a retention rate of 30-50% would be ambitious, but not unrealis-
tic. On the other hand, we needed to account for the dynamics of
our teaching process. With two program coordinators, we had a
limited pool of energy and attention we could distribute among all
participants. Starting with the assumption that we would need at
least 5 new Lisp programmers within 6 months or so, and taking
into account the constraints above, we settled on wanting to hire
10 interns for our program.

Not having clear ideas about what sort of response to expect,
we decided to address the local student population. Official ads
introducing the internship program were placed on several well-
known job boards. Using contacts at Jagiellonian University, we set
up an additional publicity event — a guest lecture presenting the
technology stack behind Keepit, and our work opportunities for
students and graduates. Around the same time, another department
at Keepit (working in the connector-specific DSL area) came up
with a similar idea and we opted for a joint presentation at the
aforementioned lecture.

We then proceeded to conceptualize a rough outline of the up-
coming internship. It was obvious that the first steps would need to
cover language basics and tooling. Which, in turn, raised the shake-
spearean question: to Emacs or not to Emacs? Despite being wary
of setting our future interns on too many parallel learning paths
(especially, burdening them with ancient semiotic traditions, many
of which are present in Emacs), we answered the above question in
the affirmative, largely due to the fact that we felt less confident
about alternatives, such as toolkits for Vim or VSCode. We were
also keeping in mind the main goal of the program — to prepare
people to join the Lisp department — and we already had a solid
base of Emacs users there.

2.1 Recruitment
Once the idea was well established and put on solid institutional
footing, we enlisted the help of our Talent Acquisition team. They
set up a dedicated dashboard in Teamtailor — an applicant-tracking
system that had been successfully used at Keepit before. A pipeline
for processing prospective candidates was been created to accom-
modate relevant stages of the process, including resumé screening,
interviews, work on our recruitment problem, and subsequent tech-
incal discussion.

We formulated a programming task for the candidates to solve,
which would provide starting points for a technical discussion. We
were primarily interested in two things: overall technical mindset

(curiosity and tenacity rather than a solid body of knowledge) and
good communication skills. Because we had received more than
70 resumés, we knew we could not realistically expect to talk to
every candidate and so were rather strict with those we had any
misgivings about. Broader engineering culture was also a concern,
which is whywe required the submitted solutions to be documented
and to conform to some formal constraints that we set up.

Over the course of the next few weeks, we received around
30 solutions of varying quality and depth. The languages used
ranged from Python and C++, through Java, Go and C#, with one
or two people actually taking the trouble to attempt a solution in
Common Lisp. We were not expecting flawless approaches at this
point. In fact, we were hoping to gain some talking points for the in-
person technical interviews scheduled for the next stage. Common
programming problems, such as excessive complexity, disregarding
edge cases, and possible input sizes were valuable to us, as they
allowed us to further inspect and analyze the candidates.

In addition to us discussing the technicalities of submitted solu-
tions, those interviews were meant to assess the candidates’ com-
mand of spoken English and see how they behave in a moderately
stressful situation. We were particularly interested in whether they
would be able to hold a highly technical discussion with some
amount of fluency and clarity. Regrettably, some otherwise promis-
ing candidates were rejected by us solely on the basis of how stress
overpowered their communication skills. Our thinking in that re-
spect was that being able to talk about programming is vitally
important and a candidate demonstrating instability at such an
early stage posed significant risk of having this kind of problems
later as well. Contrary to many statements that describe Lisp as a
language for “lone wolves”, it is possible and expected to write it
collaboratively — we were filtering people based on that.

After more than two weeks of having daily interviews, usu-
ally with several candidates on a single day, we had a preliminary
ranking of candidates and we were beginning to make some early
acceptance decisions.With outstanding candidates, we did not want
to risk “losing” them by deliberating too long. Slowly but steadily
our ten slots began to fill and eventually we had a full roster of
people to whom we presented our offer and who accepted it.

One observation we were able to make at this stage was just
how much energy it required. Having two or three candidates on
a single day was mentally taxing and disrupted other things we
might have planned. Four was exhausting beyond our previous
beliefs. One time we had five, which we managed, but then deemed
too much to sanely repeat.

2.2 Teaching
Once our new interns had arrived at the office in late November
2024, there came the time to test our assumptions and set to work
getting them up to speed. In keeping with the bottom-up traditions
of tool building, we decided to tackle the development environment
first. Most people were somewhat familiar with mainstream offer-
ings, such as VSCode and the JetBrains IDEs. So naturally there
was some unlearning to do.

2.2.1 Emacs. The first order of business, after giving the interns
their work machines, was to get them to install GNU Emacs and
run the built-in tutorial. This was the first time most of them had
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seen, let alone used, Emacs. We gave them them plenty of time to
get used to the unfamiliar keybindings, idiosyncratic terminology,
and workflow. In the meantime, we offered our assistance with any
questions they had, and held some live demo sessions to review
and extend what they had learned.

Around the same time, we started thinking about a bulk-purchase
of some quality introductory materials for Emacs learners. We
surveyed the available resources and decided to contact the author
of [6] with regard to getting some digital copies of the book, plus
physical copies of [3] and [5]1. Soon after, we made the purchases
and invited the interns to devote additional time and energy to
self-study.

Over the course of the next few days, we encouraged them to
take the immersive approach and spend as much time inside Emacs
as possible. There were many aspects in their GNU/Linux work
environments that needed tweaking and configuring so we tried to
make them use Emacs for that as well. We showed how learning a
new set of keybindings can be useful in other contexts, e.g. in Unix
shells and Readline-enabled programs.

All in all, what proved the most important and efficient in terms
of knowledge transfer was direct assistance whenever people en-
countered problems, and leading by example. Also, sharing of con-
figuration code snippets saved a lot of time with discovering Emacs’
potential and saved the interns the frustration of searching dis-
parate sources.

2.2.2 Common Lisp. After this brief prelude came time for the gist
of our internship - the actual teaching of Common Lisp. Long before
starting, we decided to pattern our exposition on [7]. Although it
did feel slightly dated in some respects, we deemed the overall
structure of the book very much relevant, particularly the beginner-
friendly explanations of Lisp-specific notions of symbols, cons cells
and CLOS. At the same time it has a much faster pace than, for
example, [8], reflecting the fact that our interns were already in the
middle of their CS education.

The added benefit, from our point of view, had been how [7]
intersperses more theoretical, explanatory chapters with practical
ones, often implementing some toy, yet functional project. In our
opinion, the above neatly illustrated how you can start doing inter-
esting things with Common Lisp with relatively modest theoretical
foundations.

From the very beginning, we knew that synchronization be-
tween interns was going to be a problem. Most of them still had
university classes they needed to attend, and their schedules were
essentially incompatible with each other. We decided to make our
video sessions recorded and available internally, which not only
worked around this problem, but also provided our interns with
material for later review that also constitutes our only internal Lisp
teaching resource to date.

We also recognized the importance of visual aids to our more
verbal explanations and hands-on examples. A graphical tablet, eas-
ier to record than whiteboard, was employed to draw conceptual
diagrams and explain the various aspects of CL that caused con-
fusion. The ad-hoc nature of these diagrams made plenty of room
for humor. By presenting “serious matters” in a frequently jocular
manner, we managed to dispel the initial feeling, among many of
1One of the authors apologizes for a self-insert.

our interns, of dealing with something alien and incomprehensi-
ble. To our delight, merriment became a staple of our almost daily
meetings and our sometimes quirky sense of humor got picked, to
some extent, by others.

In December, another edition of Advent of Code ([1]) launched,
and we already knew that some interns were willing to participate.
So as a complement to our regular lectures, we organized optional
AoC problem-solving sessions, where we would tackle one or two
problems and construct solutions in a highly interactive manner.
These sessions proved to be of great value, since they highlighted
the areas where the understanding built through attending our
regular lectures proved insufficient or where explaining things
from a fresh angle made it easier for the interns to grasp. We used
the opportunity to talk about more general Computer Science topics
as well, discussing specific algorithms, questions of complexity, and
demonstrating how the conversational nature of Common Lisp
facilitated bottom-up construction of programs. It was around this
time that we adopted the attitude that we would rather repeat
something three times than zero times.

We used the course outline developed before the internship to
track the progress of our curriculum — both for ourselves and to
communicate the status to our colleagues in the People & Culture
department who were responsible for the administrative aspects of
our program. Figure 3 shows a finished summary of our teaching
efforts, along with a rough initial estimate on when we would touch
given topics. This estimatewasmostly correct, with usmoving some
topics around the month boundaries, adapting to the needs of our
interns.

2.3 Evaluation
After approximately two months, we had managed to cover every
topic that we considered the core of the program. Around that time
we began thinking about ways to evaluate our interns’ progress.
On the one hand, this was a semi-formal requirement from our
colleagues coordinating the internship, on the other, we wanted to
see how well they would be able to apply the knowledge they had
accumulated. There were two major projects aimed at getting the
interns deeply involved in some more complex programming.

Firstly, as an outgrowth of a fantasy-themed demonstration of
CLOS, we presented our interns with code for elements of a role-
playing game engine, implementing mechanics of hitting monsters
with weapons. This allowed us to express different class hierarchies
for weapons and monsters, as well as means of showing method
combinations, chaining generic functions, and working with their
recursive calls. Tasked with adding various changes to this codebase
and with freeform experimentation, people started extending and
developing their custom versions of this engine. In our observations,
having a concrete narrative in their heads made it easier for them to
think about the purpose of having class hierarchies and advanced
method combination mechanics. At times, we were astonished by
the extent to which they allowed their imaginations to lead them
toward deeper understanding of CLOS and CL itself.

Secondly, one of us conceived of a programming variant of an
Easter egg hunt. A Lisp image spiked with riddles, hints, hidden
messages and codes was been prepared, tested, and deployed in a
compiled form to be shared with the interns. Our intention with
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Figure 3: Common Lisp curriculum

it was to emulate a connection to a running Lisp process and in-
trospecting it via the REPL, debugger, and inspector only, without
access to the source code comprising the egg hunt itself.

We encouraged our interns to cooperate to some extent, shar-
ing insights and methods, but not to spoil each others’ fun going
through the riddles. The idea proved to be very popular and got the
interns visibly engaged and excited about this method of teaching.
The source code of the Keepit Egg Hunt has been made public and
is available in a Git repository at [2].

Having successfully completed this part of the internship, we
deemed them ready to reach for more advanced resources and
recommended that they start reading [4]. We ran some additional
sessions explaining and applying the creation, usage, and pitfalls
of macros. It took a while for the fundamental nature of macros to
sink in, but ultimately we seem to have succeeded.

Our goals with the different parts of the evaluation process were
to verify different qualities of our interns. The CLOS role-playing
game project was meant to check their creativity in terms of ex-
tending existing code with new ideas, as well as their willingness
to question the assumptions made by us for how monsters are al-
lowed to be hit and how weapons are supposed to work. The egg
hunt was meant to verify their knowledge of Lisp process internals
and develop their intuition of working with image-based program-
ming, including the dangers of destroying some data and needing
to possibly restart the process in such cases.

Additionally, we kept an eye on initiatives taken by the interns
themselves. Some examples are writing programs with more com-
plicated logic (e.g. chess engines), modifying FOSS Lisp programs
like simple games, or making contributions and bugfixes to libraries
used throughout the Lisp ecosystem. This approach has proven valu-
able to us later, when we were selecting candidates for employment
in Keepit.

2.4 Diving into the System
At this stage, our students were ready to get introduced into the
architecture of our system and subsequently to our codebase. We
started with a fairly detailed drawing session with all the elements
described above arranged into a logical diagram with data flow and
dependencies pictured. Once they had a grasp of “what” and “why”,
we moved on to “how”.

Our presentation of how the code is organized proceeded outside-
in. We took the entry points of our Lisp components and systemat-
ically went through them, commenting on the purpose of various
subcomponents, and frequently jumping into definitions. This way
we could quickly and concretely address many questions arising
along the way, but also provide yet another example of using Emacs
and Slime as a jack-of-all-trades, apt for writing Lisp code, but also
for exploring existing structures, with example uses of breakpoints,
trace facilities, crossreferencing, and browsing large projects.

We then tried to demonstrate a typical workflow, including work-
ing with Jira on task formulation and discovery, and using Git and
GitLab to manage changes and merge requests. In order to get the
interns more familiar with the approach of branching off, doing
work, creating merge requests and merging, we created a dedicated
Markdown file to collect their feedback and requests regarding the
internship itself. We asked them to contribute to that file using the
workflow above to exercise that aspect of working with files.

To top off this path to becoming more self-reliant and indepen-
dent programmers, we devised some real-world but simple tasks
for the interns to work on in teams. We provided a simple Lisp pro-
gram for splitting people into three groups and reviewed it together
for the sake of transparency and learning. Using it, we divided
them into 3 teams randomly assigned to those tasks. We spent
some time explaining the tasks and fleshing out their descriptions.
Next, we gave them a couple of days to self-organize, research their
respective topics, and divide the work.

Over the course of the next two weeks, they worked diligently
on the tasks. We observed they changed their sitting arrangements
to make collaboration easier. Seeing them take initiative, try various
approaches, and have constructive discussions by the whiteboard
was a heartwarming sight after all the time spent teaching them.
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Afterwards, we moved on to smaller and more refined tasks,
requiring more insight and self-reliance with regards to exploring
the code and finding information, as well as contacting other people
within the company for hints and support with merging. Those
tasks were from our backlog of so-called “patch pool” tickets, from
whichwe selected small fixes that could be developed independently.
Gradually, our interns moved from necessary collaboration into
solo work, with the tasks also becoming more and more specific.

2.5 Wrap-Up And Hiring
By the last month of the internship, we had collected enough in-
formation to be able to make our decisions with regards to hiring.
We came to a conclusion that — however unlikely we consider
it to be — all ten of our interns were viable for being hired as a
team, each of them displaying a different combination of qualities,
simple technical prowess being only one of them. Our opinion was
consulted with the rest of our Lisp team and found further support.

After bringing our concerns up with our company management,
it became obvious to us that our current business constraints do
not permit us to hire all ten of them, even taking their part-time
availability into account. Based on this, we made a decision to
pick six of them to be offered contracts for Junior Common Lisp
Developers right away, while keeping contact information for the
remaining four to use as soon as new Lisp positions open up in the
future.

We wrapped the internship by holding individual performance
reviews with each of the interns. We made it explicit that the intern-
ship result was positive for each of them and the hiring decision
was made as a result of company-wide business constraints that
our Lisp department in Keepit was not able to negotiate around.

At the time of finalizing this paper, the contracts are currently
being signed. There is no data for long-term effects and career paths
for the interns, as the internship is currently being concluded; this
shall remain to be discovered in future studies.

3 Lessons Learned
Five months spent in close proximity with a group of ten bright and
eager young people has been a curious experience for the authors.
Constantly demanding and taxing on the one hand, energizing and
rewarding on the other. We saw almost daily the joy of discovery
and amazement at the brilliance and simplicity of Lisp, which served
to renew our own enthusiasm, but also instilled in us a heightened
sense of responsibility for others. It was with a touch of nostalgia
that we saw the conclusion of our program, but at the same time
we were happy for our interns having become more experienced
and mature in the process.

As a company, we were able to draw some conclusions from all
the above. First and foremost, when faced with a shortage of pro-
grammers available on the market, sometimes the best a company
can do is “grow your own”. The process may not be easy nor quick,
but when done right it can bring value to an employer in the form
of junior programmers who already know the language and the
basics of the company codebase.

Having limited time and a lot of material to cover is challenging
in that one needs to find the right formula of timesharing and
sequencing. Multiple topics such as tooling, language structure and

ecosystem, existing codebase, and established company practices
need to be taught in parallel. But the perils of too much context
switching and logically unsound sequencing of topics can cause
more confusion than comprehension.

One particular problem made evident by our approach is that
learning Emacs is a major factor that counts towards a Lisp pro-
grammer’s productivity. Even a person with good knowledge of
Lisp and advanced interpersonal skills may be crippled by their
lack of efficiently moving around Emacs — an observation we made
during the internship based on the individual progress of some
interns.

Another piece of feedback that came from our interns was that
we should have begun assigning practical tasks to them from the
very beginning, rather than focusing on the theory and exercises
from [7]. It was noted that the hands-on exercises, such as Advent
of Code, the role-playing game, and Egg Hunt were of great value
to them.

Yet another issue we have noticed was not enough work for our
interns, especially toward the end of the program. Procuring tasks
ad-hoc proved difficult and messy. The interns regularly exceeded
our expectations regarding time spent solving problems. Preparing
a long enough backlog of tasks ahead of time (potentially recruiting
the help of our Lisp colleagues) could have alleviated this problem.

4 Conclusions
There’s a well known quote byMarvinMinsky: “Anyone could learn
Lisp in one day, except that if they already knew Fortran, it would
take three days.”. It describes aptly (if a little indirectly) the situation
with our interns. Having little programming experience meant
having to “unlearn” fewer things before approaching Common Lisp
with an open mind. In our view, that “freshness”2 really served our
interns well in the longer run.

The recruitment process for our internship started amidst a so-
called “employer’s market” phenomenon in IT. Companies could
afford to be picky about candidates with many talented and moti-
vated people competing for a single opening. One can’t help but
think that such circumstances make young people in need of pro-
fessional experience more eager to express interest in less orthodox
offerings. Such was the story behind this one.
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ABSTRACT
Dependent types provide a way for programmers to write code that
computes types. Type-level computations in turn may depend on
values, allowing various powerful programming patterns. Moreover,
even though types exhibit a rich dynamic semantics, type-checking
remains a purely compile-time operation.

The Deputy system presented in this paper is a Clojure-hosted
dependently-typed programming language, featuring inductive
datatypes. It serves as an experimental vehicle to explore the im-
plications of the Lisp-based REPL-driven interactive development
workflow, not only while programming but also during type check-
ing. The system is thus developed as a Clojure library, which means
that the host language is still available while “programming” at the
type-level.

CCS CONCEPTS
• Theory of computation→ Type theory; Constructive math-
ematics; • Software and its engineering → Data types and
structures.

KEYWORDS
dependent types, REPL, symbolic debugging

1 INTRODUCTION
Dynamic versus static typing is perhaps the longest unresolved
programming debate, revived almost daily on the Hacker news1.
Static typing helps to find (some) bugs early, undoubtedly. But,
the other way around, types often get in the way of just thinking
about solving computation problems. Consider for example data-
oriented programming [22] that involves complex pipelines along
which semi-structured data pass through chains of transformations.
With classical algebraic datatypes, the specification of such systems
ofen leads to significant redundancy (trying to exactly capture the
specifics of each step) or loss of accuracy (merging multiple, dis-
tinct representations in a coarser one). Compilation chains provide
another similar situation, with the implementation of multiple com-
pilation passes, each one characterized by an input and an output
intermediate language representation. Of course, more powerful
1Actually, Lispers know that the debate is somewhat pointless, considering e.g. Typed
Racket, Typed Clojure or Coalton for instance.
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type systems have been proposed to improve the situation: polymor-
phic variants [12], refinement types [10], set-theoretic types [4], etc.
to name but a few. However, if the comfort improves, we still face
the situation that types remain mostly static and overall distinct
from actual computations

From a totally different perspective, dependent types [16] put
into question the overly static nature of classical type systems. Pio-
neered by Epigram [18], languages based on dependent-type theory
provide an integrated development environment assisting program-
mers in writing code that compute types. In data transformation
pipelines or compilation chains, each node of a data-transforming
pipeline can be specified at the type level by a transformation
performed at the type-level. Most interestingly, type-level computa-
tions may depend on “normal” value-level computations, i.e. taking
the output of a data-transforming node to adapt the type of the next
node in the chain. A typical down-to-earth example is that of type-
checking format calls by first parsing the format strings, and then
checking the argument types. One can also think about modern web
frameworks hosted in typed languages, performing an extraction
of the database schema at boot time so as to validate the type safety
of database queries [11] ahead of any execution. Dependent types
natively support these patterns, and much more [21]. Moreover,
even though the system is dynamic, type-checking is still performed
purely at compile-time, which makes the approach quite different
from runtime validation frameworks such as clojure.spec 2 or
Malli 3.

The goal of the Deputy project4 is to support an integrated
experience of programming with dependent-types from within a Lisp
host – actually the Clojure programming language – in a typical
domain-specific language approach. The choice of Clojure is mostly
pragmatic: the essence of dependently-typed programming being
purely functional. Another less fundamental but still enjoyable
characteristic of Clojure is its support for vectors and maps beyond
lists and S-expressions. The flip side of the coin is that computing
with dependent types can be quite demanding performance-wise,
involving non-trivial memory usage patterns5.

Technically-speaking, Deputy is a Lisp remake of the work
of Chapman et al. [5], which describes an implementation of in-
ductive families, the dependently-typed generalization of algebraic
datatypes [3]. Drawing on the work of Benke et al. [1] and Morris
et al. [20], this work devised a tiny yet powerful presentation of
inductive types and inductive families. A fascinating property of
this implementation was its reflexive nature: the formalization of
inductive types was carried (and in fact implemented!) in terms of
2https://clojure.org/guides/spec
3https://github.com/metosin/malli
4https://gitlab.com/fredokun/deputy
5cf. https://github.com/AndrasKovacs/smalltt
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itself: the grammar of inductive types was bootstrapped, encoded
as an inductive type similar to any other inductive definition. To
achieve this feat, the entire type theory was designed to natively
support a (restricted) form of homoiconicity, heavily inspired by
Lisp representation of lists as cons-cells. As a consequence, na-
tive and reflected terms are syntactically identical and the boot-
strap goes unnoticed for the user. The present work reiterates this
bootstrap process6, taking full advantage of the host language and
programming environment.

The presentations being done, we now provide the outline of the
remainder of the paper. In Section 2, we illustrate one of the main
tangible features of the Deputy system: the fact that the user of
the system can interact in a typical REPL-based workflow with the
main and most complex component of the sytem: its type-checker.
In Section 3, we introduce dependent types through the Curry-
Howard correspondance adopting dependent types as a means of
specifying our programs. We next develop statically-typed coun-
terparts to several idiomatic Clojure idioms (Section 4), namely
keywords and maps. This enables us to transfer the burden of vali-
dating basic schemas from run-time to compile-time ; We ultimately
extend our type theory with inductive types (Section 5), thus giv-
ing ourselves the ability to program with recursive (well-founded)
data-structures. As a consequence, recursive schemas can thus be
checked at compile-time too.

We do expect some readers to remain unmoved by the possibility
of embedding (yet) another type checker in their favorite Lisp. Hav-
ing ourselves endured quite a few hours pondering over inscrutably
complex type errors, we sympathize with this stance: aside from
the academic exercise, why subject oneself to the ordeal of arguing
with a type-checker? The general take-away of the present work
remains that dependent types offer a language as powerful as con-
structive mathematics to specify computation of software artifacts.
With great power . . .

2 AN APPETIZER: TYPE-LEVEL SYMBOLIC
DEBUGGING

The primary goals of the Clojure implementation are two-fold. First,
we want to exploit the full potential of the homoiconoicity require-
ments by having the object language (our dependently-typed lan-
guage, Deputy), live as an embedded language into its host language.
This is the easy part. Second, and it is a little bit more tricky, we
want to explore the implications of the Lisp-based REPL-driven in-
teractive development workflow during type-checking. While typed
programs do not fail (in the sense that they are immune to run-
time type errors), type-level programs can (and do!) fail. Indeed,
the dynamic nature of dependent types make them quite hard to
keep track of in one’s head, and type errors may be tricky to fix.
Programmers need assistance during type-checking, to the point
where one would contemplate having a type-level debugger. How-
ever, we knew from experience that rolling our own interactive
tooling would be prohibitively expensive, inducing a significant
risk that our experiment would grind into a halt. Instead, we rea-
soned that we could take advantage of the tooling already provided
by our host language, namely the REPL and associated debugging
environment. This, we believe, may be the most innovative aspect
6Also helped by a talented student: thank you, Teo Bernier !

of our implementation: the fact that the type-checker is completely
reflected into the host.

Indeed, dependent types are “nothing but” abstraction of pro-
grams, with the type-checker playing the role of an interpreter,
reducing the pair of a program applied to its type to true only if
the program is provably not going wrong over any concrete value
inhabiting that type. In the field of abstract interpretation, a similar
observation lead to “abstract debugging” [2, 13, 19]: rather than
debug a program with a single concrete, run-time value (such as an
integer), one can just as well debug the abstract program (obtained
by abstract interpretation of the concrete one) using an abstract,
symbolic representation of a potentially-infinite set of values (such
as open-ended intervals of integers).

Hence, a Deputy program has two distinct execution phases: In
the first phase, its type checker runs the program symbolically (and
in an open context) by referencing top-level typing annotations.
When this phase succeeds, the program can then be considered
well-defined, permitting Deputy to progress to the second phase of
execution. In this second phase it directly runs the actual program
using concrete values. With either phase, when encountering an
execution error, Deputy is capable of launching a debugging session.
Currently, it uses the the debugger included with the Cider mode
of Emacs 7.

Similarly, in case of an error during type-checking, we can take
advantage of debugging breakpoints in the implementation of the
typing rules. For example, the following

(defterm [wrong [f (=> :unit :unit)]

[x :int]

:unit]

;; WRONG: `x` is an `:int`
;; cannot be an argument to `f`
(f x))

attempts to define a function called wrong that takes two arguments,
f of type (⇒ :unit :unit) and x of type :int, outputs a result of type
:unit, and simply applies f on x. Since the type :unit is distinct from
the type :int, this definition is ill-typed8. In particular, the issue will
be detected by the type conversion rule

(defmethod type-check-impl

:computation

type-check-impl-computation

[ctx vtype term]

(ok> (type-synth-impl ctx term) :as synth-vtype

[:ko> (#dbg "Cannot␣synthesize␣type.")

{:term (a/unparse term)}]

(if (n/alpha-equiv vtype synth-vtype)

true

(#dbg [:ko "Term␣`term`␣is␣not␣of␣type␣`vtype`."
{:term (a/unparse term)

:synth-type (a/unparse synth-vtype)

:vtype (a/unparse vtype)}]))))

7https://docs.cider.mx/cider
8This can be fixed by either changing the type of f to (⇒ :int :unit) , or changing the
type of x to :unit, depending on the context in which this definition is actually used.
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Being instrumented with judiciously-placed #dbg breapoints
(a very convenient debugging aid provided by Cider), the type-
checker gets suspended at the origin of the type error we intend to
debug, bringing Cider into the state depicted in Figure 1.

From there, one can query the stack trace (using the command
“s” in Cider) of the type-checker, which implicitly represent the
collection of typing rules involved so far:

(...)

REPL: 131 deputy.typing/eval15258/type-check-impl-computation

MultiFn.java: 239 clojure.lang.MultiFn/invoke

typing.clj: 64 deputy.typing/type-check

typing.clj: 52 deputy.typing/type-check

typing.clj: 220 deputy.typing/eval1422/type-synth-impl-application

MultiFn.java: 234 clojure.lang.MultiFn/invoke

REPL: 127 deputy.typing/eval15258/type-check-impl-computation

(...)

or we can query the local variables (using the command “l” in
Cider) involved in that particular typing rule:
Class: clojure.lang.PersistentArrayMap

Count: 6

--- Contents:

type-check-impl-computation = #function[(...)]

ctx = {f {:node :pi, :domain :unit,

:codomain {:node :bind, :name _, :body :unit}}, x :int}

vtype = :unit

term = {:node :free-var, :name x}

res15256 = :int

synth-vtype = :int

More conveniently, we can also use local evaluation (using the
command “e” in Cider) to call arbitrary functions defined in the
Deputy library. For example, calling (debug-ctx ctx) will display
a pretty-printed representation of the ctx variable (Figure 2). Of
course, most of the required machinery is made available thanks
to Cider, Clojure itself and the underlying runtime (in general,
the JVM but JS in another possibility through Clojurescript). The
contribution on our part is the architecture of the type-checker that
provide several entry points for reflecting its behaviour.

3 DEPENDENT TYPE THEORY
In the following, we offer a piecemeal presentation of the syntax
and semantics of Deputy’s kernel: a simple dependently-typed
language. We start off with some rudimentary syntactic constructs
in order to establish conceptual foundations of the language. We
then incrementally build up support for functions (Section 3.1) and
pairs (Section 3.2).

Unlike their simply-typed cousins, dependently-typed languages
provide a single, unified language for describing programs as well
as their types. There is therefore a single syntactic category encom-
passing both terms and types. It is only type-checking that decides
whether an expression is meant to denote a program (in which case,
we conventionally use the letter 𝑡 to denote such an expression) or
as the type of of a program (in which case, we conventionally use
the letter 𝑇 to denote such an expression). Both belong to the same
syntactic category of “terms and types”.

Because open term reduction (i.e., reducing a program with free
variables whose type is provided by a non-empty context) plays a
key role during type-checking, we define two syntactic categories,
distinguishing canonical terms (representing either values or terms
stuck on a variable) from computational terms (representing either a

computation stuck on an open variable, or a suspended computation
𝑡 carrying a type annotation). A short extract of the syntax is given
below (cf. Appendix A for the complete syntax).

𝑇, 𝑡 ::= (canonical types & terms)
| :type (type of types)
| 𝑒 (stuck term)
| . . .

𝑒 ::= (computational terms)
| (the𝑇 𝑡) (type annotation)
| x (variable)
| . . .

Over such a tiny fragment, the reduction relation, written 𝑡 { 𝑡 ′

to denote the fact that a term 𝑡 reduces to a term 𝑡 ′, is almost trivial:
a :type is already a value, thus fully reduced; an open variable x is
already neutral, thus fully reduced. Only the type annotation hides
some potential reductions, we thus have:

(the𝑇 𝑡) { 𝑡

If we forbid type annotations from appearing within computa-
tional terms, the resulting syntactic category corresponds exactly
to values (denoted by the letter 𝑣) in an open term reduction system:
it is either a canonical term or a neutral term, i.e. a computation
stuck on some open variable (denoted by the letter 𝑛).

The design of the type system can be thought off as the identifi-
cation of some invariant over terms so as to ensure that

(1) a well-typed computational term 𝑒 always reduces to a neu-
tral term 𝑛 (i.e., all redexes have been eliminated) ;

(2) a well-typed canonical term 𝑡 always reduces a value 𝑣 , for-
mally: 𝑡 {∗ 𝑣 .

Together with the fact that reduction should preserve typing
(i.e., if 𝑡 has type 𝑇 and 𝑡 { 𝑡 ′, then we expect that 𝑡 ′ also has
type 𝑇 ), this means that a type-checked term can be trusted. For
example, we know in advance that a Boolean expression in an
empty context will consistently return either true or false. This
means that this expression can be promoted and safely get involved
in the characterization of the type of programs: type-checking is
decidable and terminating.

Mechanistically, type-checking can thus be understood as the
process of analyzing a term 𝑡 and making sure that it will always
handle every interaction available to an environment specified by a
typed context Γ and producing outputs following the specification
set by a type 𝑇 . We thus define the type-checking judgment

Γ ⊢ 𝑇 ∋ 𝑡

to mean that the type 𝑇 accepts the term 𝑡 in context Γ, where the
typing context associates a type to every free variable of 𝑡 :

Γ ::= (contexts)
| 𝜖 (empty context)
| Γ, x : 𝑇 (variable declaration)

On paper, the type-checking judgment is presented as a relation.
However, it admits a straightforward algorithmic reading: it can
in fact be implemented as a function taking a context, a type and
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Figure 1: (Symbolic) debugging

Figure 2: Accessing the context by evaluation in the debugger

a term as arguments, returning either a success or a (very, almost
too) detailed error trace detailing why the term is ill-typed.

In the actual implementation, type-checking is delegated to a
multimethod definition:

(defmulti type-check-impl #'type-check-dispatch-fn)

for whichwe implemented an ad-hoc dispatch function for resolving
the multimethod calls.

As usual with trust, our intuition suffers from a bootstrapping
problem: if types are specifications against which we validate or
reject the validity of terms, how do we assert the validity of types
themselves? For simplicity, we adopt the following inference rule

Γ ⊢ :type ∋ :type
Type-in-Type

stating that the type of all types (denoted by :type) is itself well-
typed (and its type is :type itself). Recall that inference rules reads
in a bottom-up manner: here, we conclude that the judgment Γ ⊢
:type ∋ :type is valid without any further assumption as there are no
premises judgments above the inference rule. In the implementation,
this is implemented as follows:

(defmethod type-check-impl [:type :type]

type-check-type-in-type [_ _ _]

true)

From this assumption, it is easy to check that a given type 𝑇 is
valid in a context Γ: we must have Γ ⊢ :type ∋ 𝑇 . Unfortunately for
Mathematicians, the rule Type-in-Type [15] leads to an inconsistent
logic [14]. However, it is not the kind of “logical exploit” that one

ends up writing by accident9. Solution exists [24] to sidestep the
problem entirely but they are costly to implement. Trusting the
benevolence of our users, we stick with Type-in-Type.

Type-checkingmeans that types have to be explicitly provided by
programmers. To alleviate this burden, we adopt a bidirectional type
system [6, 9], wherebywe exploit the fact that we can systematically
synthesize the type of computational terms through a type synthesis
judgment Γ ⊢ 𝑒 ∈ 𝑇 which reads as “in context Γ, we can deduce
that the term 𝑡 has type 𝑇 ”. Algorithmically, this means that this
judgment can be implemented as a function taking a context and a
term, producing a type. The implementation relies on the following
multimethod:
(defmulti type-synth-impl

(fn [_ term] (:node term)))

The dispatch is simply done on the syntactic category of the expres-
sion. Note that Deputy does not provide a generic type inference
mechanism, for the very simple reason that dependent types are
too powerful: the problem is indecidable. Instead, we rely on type
synthesis as a restricted form of local type inference with a clear,
syntax-directed information flow.

For example, upon a variable, we simply have to lookup the
context to figure out its type:

Γ0, x : 𝑇, Γ1 ⊢ x ∈ 𝑇

This translates as follows in the implementation:
9In Agda, this consists in about 40 lines of carefully-crafted definition, maintained as
part of the official test suite [8]. We expect a similar effort to port this result to Deputy.
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(defmethod type-synth-impl :free-var

type-synth-impl-free-var [ctx term]

(get ctx (:name term)

[:ko "Type␣Synthesis␣Error␣(...)"]))

Similarly, an annotated term carries along its type, so we just
need to check the validity of the provided type (which cannot be
trusted a priori, since it was written by the user) and then check
that the term is admitted at the given type:

Γ ⊢ :type ∋ 𝑇 Γ ⊢ 𝑇 ∋ 𝑡

Γ ⊢ (the𝑇 𝑡) ∈ 𝑇

where this inference rule reads as “assuming that the judgments
Γ ⊢ :type ∋ 𝑇 and Γ ⊢ 𝑇 ∋ 𝑡 hold, we can conclude that the
judgment Γ ⊢ (the𝑇 𝑡) ∈ 𝑇 holds”.

Conversely, type checking can switch to type synthesis, upon
a change of syntactic category (when a computational term is em-
bedded into a canonical term). In this case, type synthesis returns
a type 𝑇0 while type checking proposes another type 𝑇1. We must
therefore also check that these two types denote the same object:

Γ ⊢ 𝑒 ∈ 𝑇0 Γ ⊢ 𝑇0 ≡ 𝑇1 : :type

Γ ⊢ 𝑒 ∋ 𝑇1

To decide equality of types, we crucially rely on the invariant
that types always reduce to values: in principle, we just have to
fully evaluate them and compare the resulting values. In practice,
various tricks are used to improve upon the inefficiency of this
approach, preserving as much sharing as possible.

3.1 Dependent functions
At the term level, the functional fragment of our dependently-typed
programming language consists of run-of-the-mill 𝜆-abstraction
and function application, whereas to specify functions, we introduce
the Π type constructor:

𝑇, 𝑡 ::= . . .

| (Π [𝑥 𝑇0] 𝑇1) (Pi type)
| (𝜆 [𝑥] 𝑡) (abstraction)

𝑒 ::= . . .

| (𝑒 𝑡) (application)
Unlike their simply-typed cousins, the co-domain of dependent

functions depends on the value passed as argument. This is visible
in the syntax of Pi types as well as their typing rule:

Γ ⊢ :type ∋ 𝑇0 Γ, 𝑥 : 𝑇0 ⊢ :type ∋ 𝑇1

Γ ⊢ :type ∋ (Π [𝑥 𝑇0] 𝑇1)

Γ, 𝑥 : 𝑇0 ⊢ 𝑇1 ∋ 𝑡

Γ ⊢ (Π [𝑥 𝑇0] 𝑇1) ∋ (𝜆 [𝑥] 𝑡)

Γ ⊢ 𝑒 ∈ (Π [𝑥 𝑇0] 𝑇1) Γ ⊢ 𝑇1 ∋ 𝑡

Γ ⊢ (𝑒 𝑡) ∈ 𝑇1 [𝑥 ↦→ 𝑡]
If the co-domain of a Pi type does not depend on the domain

value, we recover the usual, simply-typed function space:
(⇒𝑇0 𝑇 ) ≜ (Π [_𝑇0] 𝑇 )

where the variable _ is not bound in 𝑇 .
Also, to simplify notations, we adopt a sequential notation that

implicitly desugar to right-nested chains of Pi types :

(⇒𝑇0 𝑇1 . . . 𝑇 ) ≜ (⇒𝑇0 (⇒𝑇1 . . . 𝑇 ))
(Π [𝑥0 𝑇0] [𝑥1 𝑇1] . . . 𝑇 ) ≜ (Π [𝑥0 𝑇0] (Π [𝑥1 𝑇1] . . . 𝑇 ))

To reflect dependent functions at the Clojure level, we provide
a defterm macro that lets us introduce typed definitions with the
syntactic form

(defterm [f [x1 T1]

[x2 T2]

...

T]

t)

which results in, first, checking that the proposed type is valid:

Γ ⊢ :type ∋ (Π [𝑥1 𝑇1] [𝑥1 𝑇2] . . . 𝑇 )

and, then, checking the the proposed term t is indeed of the pro-
posed type:

Γ ⊢ (Π [𝑥1 𝑇1] [𝑥2 𝑇2] . . . 𝑇 ) ∋ 𝑡

If the type-checker is able to check both declarations, then f is
defined as t in the context. Consider the following (somewhat silly)
Clojure function:

(defn f [x] (if (true? x) 42 (not x)))

If we would like to type such function, the return type would
be problematic: is it an integer? is it a Boolean? In Deputy, the
following type adequately capture the intent of the function:

(Π [x :bool] (if (true? x) :int :bool))

We thus gain the ability to write functions that compute types
from values. The archetypical use of this feature are format strings,
where one must first parse the format string to determine the type
of the arguments. This parsing function is thus a simply-typed
function, of type (⇒ :string :type)

(defterm [format-type [s :string]

:type]

(...))

whichwe then use to assign a type to the arguments of the clojure.core
operator:

(defterm [format [fmt :string]

[args (format-type fmt)]

:string]

(...))

3.2 Dependent pairs & unit
After functional values, the second and third fundamental datas-
tructures of a Lisp are probably the cons cell [𝑡0 𝑡1] and its nullary
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counterpart, nil. Interestingly, they correspond exactly to two fun-
damental type constructors: the Sigma type and unit type, respec-
tively:

𝑇, 𝑡 ::= . . .

| :unit (unit type)
| nil (unit value)
| (Σ [𝑥 𝑇0] 𝑇1) (Sigma type)
| [𝑡0 𝑡1] (pair)

𝑒 ::= . . .

| (𝜋0 𝑒) (first projection)
| (𝜋1 𝑒) (second projection)

(𝜋0 [𝑡0 𝑡1]) { 𝑡0

(𝜋1 [𝑡0 𝑡1]) { 𝑡1

In particular, Sigma types are a key tool to model structured data:
in a pair [𝑡0 𝑡1], the first component 𝑡0 determines the type of the
second component 𝑡1. Formally, the type-checking rules for Sigma
types mirror the ones for Pi types:

Γ ⊢ :type ∋ :unit Γ ⊢ :unit ∋ nil

Γ ⊢ :type ∋ 𝑇0 Γ, 𝑥 : 𝑇0 ⊢ :type ∋ 𝑇1

Γ ⊢ :type ∋ (Σ [𝑥 𝑇0] 𝑇1)

Γ ⊢ 𝑇0 ∋ 𝑡0 Γ ⊢ 𝑇1 [𝑥 ↦→ 𝑡0] ∋ 𝑡1

Γ ⊢ (Σ [𝑥 𝑇0] 𝑇1) ∋ [𝑡0 𝑡1]

Γ ⊢ 𝑒 ∈ (Σ [𝑥 𝑡0] 𝑇 )
Γ ⊢ (𝜋0 𝑒) ∈ 𝑇0

Γ ⊢ 𝑒 ∈ (Σ [𝑥 𝑇0] 𝑇1)
Γ ⊢ (𝜋1 𝑒) ∈ 𝑇1 [𝑥 ↦→ (𝜋0 𝑒)]

with a notational reduction whenever the dependency is not ex-
ploited

(∗𝑇0 𝑇 ) ≜ (Σ [_𝑇0] 𝑇 )
(∗𝑇0 𝑇1 . . . 𝑇 ) ≜ (∗𝑇0 (∗𝑇1 . . . 𝑇 ))

in which case Sigma types simply boil down to the Cartesian prod-
ucts of simply-typed programmers.

As it turns out, Lisp programmers have been programming with
Sigma types since the dawn of the Unix epoch. First, in terms of
notations, right-nested cons cells

[1 [:string ["foo" [(format "%d-%s") nil]]]]]

are readily written in a tuple-like manner

[1 :string "foo" (format "%d-%s")]

Second, tuples naturally lend themselves to a left-to-right refine-
ment of types, whereby the value stored in the tuple influences the
type of values coming next in the tuple. For example, the previous
tuple can be assigned the type

(Σ [_ :int][T :type][_ T][_ (=> :int T :string)] :unit)

that also accepts the following tuple

(defterm [example-tuple (Σ [_ :int]

[T :type]

[_ T]

[ _ (=> :int T :string)]

:unit)]

[2 :int 42 (format "%d-%d")])

Through these two examples, we notice that the type construc-
tors :string and :int are used as tags indicating the type of subse-
quent values in the tuple. In the dependently-typed programming
community, this device is termed a “telescope” [17], whereby each
Sigma type lets us provide a more focused type to the subsequent
values.

4 PRESENTATION LAYER
We now extend the previous Section with affordances: means for
programmers to translate their intents into the source code. None
of the following definitions extend the expressivity of the overall
type theory. In fact, most these constructs desugars into the core
type theory.

4.1 Keywords
First, we extend the type theory with keywords. We also hard-
code a dedicated type to represent sequence of keywords since, at
this stage, our type theory does not support a notion of recursive
structure. In Section 6, we address this redundancy. The syntax
ought to be familiar to Clojure programmers:

𝑇, 𝑡 ::= . . .

| keyword (keyword type)
| :k (keyword)
| keywords (keywords type)
| nil (empty list of keywords)
| [𝑡0 𝑡1] (cons cell of keywords)

The typing rules are as expected:

:k any non-reserved keyword
Γ ⊢ keyword ∋ :k

Γ ⊢ keywords ∋ nil

Γ ⊢ keyword ∋ 𝑙 Γ ⊢ keywords ∋ 𝑙𝑠

Γ ⊢ keywords ∋ [𝑙 𝑙𝑠]
As earlier, our representation of lists of keywords is based on

cons-cells but we can rely on some syntactic sugar (Section 3.2) to
absorb the typical tuple notation. For example, translating Sharvit
[22], we can define a sequence of authors as:

(defterm [authors :keywords]

[:author/moore.alan

:author/gibbons.dave])

4.2 Enumerations
Upon a statically-identified sequence of keywords, we define struct
types. Struct types are the tag-less counterparts to Clojure’s maps.
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This requires introducing some dedicated syntax:

𝑇, 𝑡 ::= . . .

| (enum 𝑡) (finite type)
| 0 (index zero)
| (suc 𝑡) (successor index)

𝑒 ::= . . .

| (struct 𝑒 :as x :return𝑇 ) (finite function type)
| (switch 𝑒 :as x :return𝑇 :with 𝑡) (finite function application)

In a struct type, the keywords only need to exist at compile-time
(either as values or symbolically) whereas, in a map, the keywords
are carried along at run-time. As a consequence, indexing into a
struct type does not require a keyword either: the position of the
data associated with the key is statically-known and amounts to
a number, here encoded as a Peano number (0 and (suc )). In fact,
indexing into a struct amounts to identifying a position in a C-like
enumeration:

Γ ⊢ (enum [𝑣0 𝑣1]) ∋ 0

Γ ⊢ (enum 𝑣1) ∋ 𝑡

Γ ⊢ (enum [𝑣0 𝑣1]) ∋ (suc 𝑡)
Note that neither the index nor the enumeration type are con-

cerned with the actual keywords: only the number of keywords in
the enumeration play a role here. However, one can extend the type-
system to accept keywords as indices, whenever the keyword is
found in In effect, the keyword :kwould desugar to (.indexOf v :k)
during its type-checking against the type (enum 𝑣).

The struct types amount to an association list of each keyword
in the enumeration to a dedicated type:

Γ ⊢ keywords ∋ 𝑒 Γ, x : (enum 𝑒) ⊢ :type ∋ 𝑇

Γ ⊢ (struct 𝑒 :as x :return𝑇 ) ∈ :type

Given a struct type, we can project out the value at a specific
index through a C-like switch statement:

Γ ⊢ 𝑒 ∈ (enum 𝑣)
Γ, x : (enum 𝑣) ⊢ :type ∋ 𝑇 Γ ⊢ (struct 𝑣 :as x :return𝑇 ) ∋ 𝑡

Γ ⊢ (switch 𝑒 :as x :return𝑇 :with 𝑡) ∈ 𝑇 [x ↦→ 𝑒]
A dependently-typed counterpart to Sharvit [22], the bookItem

object could be defined thus:

(defterm [bookItem :type]

(struct [:id :rackId :isLent]

:as x

:return (switch x :as _ :return :type :with

[(enum catalog-bookItem-id)

(enum catalog-racks)

bool])))

Assuming an index book-item-1 in (enum catalog-bookItem-id)
and rack-17 in (enum catalog-racks), we can populate an ex-
ample of such bookItem:

(defterm [example-bookItem bookItem]

[book-item-1 rack-17 true])

Dually, we determine whether the book was lent or not by deref-
erencing the third index:

(defterm [bookItem-get-isLent

[b bookItem]

bool]

(switch (suc (suc 0)) as x

return (switch x as _ return :type with

[(enum catalog-bookItem-id)

(enum catalog-racks)

bool]) with b))

Note, once again, keywords are absent at run-time: it is at compile-
time that the return type of the switch is symbolically evaluated
to confirm that the type denoted by the expression

(switch (suc (suc 0)) as _ return :type with

[(enum catalog-bookItem-id)

(enum catalog-racks)

bool])

indeed corresponds to the declared result of bookItem-get-isLent,
namely bool.

5 INDUCTIVE TYPES
At this stage, our language of types does not support recursive
definitions, hence cutting ourselves off from the ability to program
with natural numbers, lists, trees, etc. We now extend our type
theory to support inductive definitions.

We do so by extending our syntax with a grammar to describe
type schemas. Indeed, to ensure logical coherence, dependent type
theory does not allow us to manipulate types directly (for example,
one cannot do a case analysis on types). To circumvent this limita-
tion, we must first delineate the set of types we are interested in
through a syntactic device. This is the role of the :desc type, whose
constructors must be understood as “codes” to describe types:

𝑇, 𝑡 ::= . . .

| :desc (schema descriptions)
| [:K𝑇 ] (type constant)
| :X (recursive argument)
| [:prod 𝑡0 𝑡1] (binary product)
| . . . (cf. Appendix A)

We relegate the definition of their formal static and dynamic
semantics to the Appendix A. These codes are then interpreted into
types through a schema interpretation function

𝑒 ::= . . .

| J𝑡K𝑇 (schema interpretation)

Γ ⊢ :desc ∋ 𝐷 Γ ⊢ :type ∋ 𝑋

Γ ⊢ J𝐷K 𝑋 ∈ :type

Through careful meta-theoretical analysis [7, 20], we know that
taking the least fixpoint of such schemas keeps us in the realm
of total functional programming [23]: despite the existence of re-
cursive data-structure, our programs always terminate and, as a
consequence, the logical consistency of our system is preserved
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(i.e., the type-checker cannot get caught into an infinite loop or
suddenly accept invalid judgements). One should therefore mer-
rily add a generic fixpoint at the type-level and a generic datatype
constructor at the term level:

𝑇, 𝑡 ::= . . .

| (𝜇 𝑡0 𝑡1) (inductive fixpoint)
| [con 𝑡0 𝑡1] (constructor)

We exploit the affordance of our presentation layer to expose a
choice of constructor names by piggy-backing on the struct types:

Γ ⊢ keywords ∋ 𝑙 Γ ⊢ (struct 𝑙 :as _ :return :desc) ∋ 𝐷𝑠

Γ ⊢ :type ∋ (𝜇 𝑙 𝐷𝑠)

Γ ⊢ J[:struct 𝑙 𝐷𝑠]K (𝜇 𝑙 𝐷) ∋ [𝑐 𝑥𝑠]
Γ ⊢ (𝜇 𝑙 𝐷𝑠) ∋ [con 𝑐 𝑥𝑠]

In such a system, the type of lists of (homogeneous) elements
of type A could be manually coded as follows. First, we define the
sequence of constructors:

(defterm [list-constr :labels]

[:lnil :lcons])

For each of these, we associate a corresponding code. For the
empty list constructor (tagged :lnil), there is no argument. For
the cons-cell (tagged :lcons), there is a product of an argument of
type A and a recursive argument:

(defterm [list-codes

[A :type]

(struct list-constr :desc)]

[[:K :unit]

[:prod [:K A] [:prod :X [:K :unit]]]])

Upon taking the fixpoint, this recursive argument itself becomes
an inhabitant of the type list:

(defterm [list [A :type] :type]

[:mu list-constr list-codes])

Obviously, we would not subject our users to writing such low-
level codes. Instead, we offer the comfortable experience of a sum-
of-product definition, thanks to a dedicated macro:

(defdata List "Inductive␣lists" [A :type]

(lnil) (lcons [hd A] [tl <rec>]))

6 MORE FUN
Bootstrap. In Chapman et al. [5], it was observed that the type

:desc is itself an inductive type and it could, modulo a definitional
trick, be defined within itself. We could not resist the temptation to
repeat this process in our setting: we have therefore bootstrapped
the definition of description onto themselves, following the instruc-
tions exposed by the authors. Through a similar but careful process,
we can represent the type keywords as a mere List :keyword.

Aside from the reductionist thrill of distilling our type theory to
the bare minimal, this also brings out some practical advantages.
For the grammar of descriptions (constructors of :desc) to have
the same representation as defined inductive types (constructors

of (𝜇 𝑙 𝑠) cs for some keywords 𝑙𝑠 and associated codes 𝑐𝑠) means
that any generic program over inductive types immediately applies
specifically to the grammar of descriptions.

One such example is case analysis: one can write a program10

that takes any pair of labels ls together with their associated de-
scriptions cs and computes a generic case analysis principle for
the resulting fixpoint, by recursively enumerating the type of argu-
ments and results of each constructor case.

Typed data-oriented programming. To exercise our system11, we
attempted to give a dependently-typed presentation of the Chap-
ter 3, entitled "Manipulate the whole system data with generic
functions" of the book “Data-oriented programming” by Sharvit
[22]. Following our examples in Section 4, we were easily12 able
to assign dependently-typed schemas to the various entities in-
troduced in Chapter 3. However, the grand challenge would be to
support the idiom
_.get(catalogData, ["booksByIsbn", "978-1779501127"]

used in the book to chain projections (first accessing field booksByIsbn
from catalogData followed with accessing field 978-1779501127
from the result extracted by the previous projection). In our setting,
these projections have to be resolved at compile-time, thus making
sure that subsequent projections are indeed allowed. To model this
recursive telescope of dependent types, one need to step beyond
inductive types, calling for inductive families that would allow us
to encode the evolution of types along the sequence of projections.
Unfortunately, indexed families are intimately tied with the notion
of (propositional) equality, which we had carefully avoided thus far
for the significant complexity burden it adds to a type theory.

7 CONCLUSION
Dependent types and Lisp are, we believe, perfect complements.
The level of interactivity provided by Lisp systems in general, and
by Clojure/Cider in particular provides some support to program
with dependent-types. There is still much room for improvement in
the system. One feature that is for now missing is the possibility to
erase types in the internal representation of Deputy definitions. For
example, a Deputy function is not directly compiled as a Clojure
function, which means that even closed terms have to be inter-
preted through normalization. We also intend to work on other
performance-related issues in the implementation. The manage-
ment and presentation of (dependent) type error is another major
concern while developing system that perform complex type-level
computations. For this, we think that working at the Emacs/Cider
level would provide the best angle of attack to address this issue.
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A THE TYPE THEORY OF DEPUTY
Syntax: 𝑇, 𝑡 ::= (canonical types & terms)

| :type (type of types)
| 𝑒 (stuck term)
| (Π [𝑥 𝑇0] 𝑇1) (Pi type)
| (𝜆 [𝑥] 𝑡) (abstraction)
| :unit (unit type)
| nil (unit value)
| (Σ [𝑥 𝑇0] 𝑇1) (Sigma type)
| [𝑡0 𝑡1] (pair)
| keyword (keyword type)
| :k (keyword)
| keywords (keywords type)
| nil (empty list of keywords)
| [𝑡0 𝑡1] (cons cell of keywords)
| (enum 𝑡) (finite type)
| 0 (index zero)
| (suc 𝑡) (successor index)
| :desc (schema descriptions)
| [:K𝑇 ] (type constant)
| :X (recursive argument)
| [:struct 𝑒 𝑡] (finite sum)
| [:sigma𝑇 𝑡] (large sum)
| [:prod 𝑡0 𝑡1] (binary product)
| [:pi𝑇 𝑡] (large product)
| (𝜇 𝑡0 𝑡1) (inductive fixpoint)
| [con 𝑡0 𝑡1] (constructor)

𝑒 ::= (computational terms)
| (the𝑇 𝑡) (type annotation)
| x (variable)
| (𝑒 𝑡) (application)
| (𝜋0 𝑒) (first projection)
| (𝜋1 𝑒) (second projection)
| (struct 𝑒 :as x :return𝑇 ) (finite function type)
| (switch 𝑒 :as x :return𝑇 :with 𝑡) (finite function application)
| J𝑡K𝑇 (schema interpretation)

Γ ::= (contexts)
| 𝜖 (empty context)
| Γ, x : 𝑇 (variable declaration)

Small-step reduction:
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(the𝑇 𝑡) { 𝑡

((𝜆 [𝑥] 𝑡) 𝑡0) { 𝑡 [𝑥 ↦→ 𝑡0]

(𝜋0 [𝑡0 𝑡1]) { 𝑡0

(𝜋1 [𝑡0 𝑡1]) { 𝑡1

(struct nil :as x :return𝑇 ) { :unit

(struct [𝑡0 𝑡1] :as x :return𝑇 ) { (∗ (𝑇 [x ↦→ 0])
(struct 𝑡1 :as x :return(𝑇 [x ↦→ (suc x)])))

(switch 0 :as x :return𝑇 :with [𝑡0 𝑡1]) { 𝑡0

(switch (suc 𝑡) :as x :return𝑇 :with [𝑡0 𝑡1]) { (switch 𝑡 :as x :return(𝑇 [x ↦→ (suc x)]) :with 𝑡1)

J[:K𝑇 ]K 𝑋 { 𝑇

J:XK 𝑋 { 𝑋

J[:struct 𝑙 𝐷𝑠]K 𝑋 { (Σ [𝑒 (enum 𝑙)] J(switch 𝑒 :as _ :return :desc :with𝐷𝑠)K𝑋 )
J[:sigma 𝑆 𝐷]K 𝑋 { (Σ [𝑠 𝑆] J(𝐷 𝑠)K𝑋 )
J[:prod 𝐷1 𝐷2]K𝑋 { (∗ (J𝐷1K𝑋 ) (J𝐷2K𝑋 ))

J[:pi 𝑆 𝐷]K𝑋 { (Π [𝑠 𝑆] (J𝐷 𝑠K𝑋 ))
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Γ ⊢ 𝑇 ∋ 𝑡

“Type 𝑇 admits term 𝑡 in context Γ”

Γ ⊢ :type ∋ :type
Type-in-Type Γ ⊢ 𝑒 ∈ 𝑇0 Γ ⊢ 𝑇0 ≡ 𝑇1 : :type

Γ ⊢ 𝑒 ∋ 𝑇1

Γ ⊢ :type ∋ 𝑇0 Γ, 𝑥 : 𝑇0 ⊢ :type ∋ 𝑇1

Γ ⊢ :type ∋ (Π [𝑥 𝑇0] 𝑇1)
Γ, 𝑥 : 𝑇0 ⊢ 𝑇1 ∋ 𝑡

Γ ⊢ (Π [𝑥 𝑇0] 𝑇1) ∋ (𝜆 [𝑥] 𝑡)

Γ ⊢ :type ∋ :unit Γ ⊢ :unit ∋ nil

Γ ⊢ :type ∋ 𝑇0 Γ, 𝑥 : 𝑇0 ⊢ :type ∋ 𝑇1

Γ ⊢ :type ∋ (Σ [𝑥 𝑇0] 𝑇1)
Γ ⊢ 𝑇0 ∋ 𝑡0 Γ ⊢ 𝑇1 [𝑥 ↦→ 𝑡0] ∋ 𝑡1

Γ ⊢ (Σ [𝑥 𝑇0] 𝑇1) ∋ [𝑡0 𝑡1]

Γ ⊢ :type ∋ keyword

:k any non-reserved keyword
Γ ⊢ keyword ∋ :k Γ ⊢ :type ∋ keywords Γ ⊢ keywords ∋ nil

Γ ⊢ keyword ∋ 𝑙 Γ ⊢ keywords ∋ 𝑙𝑠

Γ ⊢ keywords ∋ [𝑙 𝑙𝑠]

Γ ⊢ keywords ∋ 𝑡

Γ ⊢ :type ∋ (enum 𝑡) Γ ⊢ (enum [𝑣0 𝑣1]) ∋ 0

Γ ⊢ (enum 𝑣1) ∋ 𝑡

Γ ⊢ (enum [𝑣0 𝑣1]) ∋ (suc 𝑡)

Γ ⊢ :type ∋ :desc

Γ ⊢ :type ∋ 𝑇

Γ ⊢ :desc ∋ [:K𝑇 ] Γ ⊢ :desc ∋ :X

Γ ⊢ keywords ∋ 𝑙
Γ ⊢ (struct 𝑙 :as _ :return :desc) ∋ 𝐷𝑠

Γ ⊢ :desc ∋ [:struct 𝑙 𝐷𝑠]

Γ ⊢ :desc ∋ 𝐷1
Γ ⊢ :desc ∋ 𝐷2

Γ ⊢ :desc ∋ [:prod 𝐷1 𝐷2]

Γ ⊢ :type ∋ 𝑆
Γ ⊢ (⇒ 𝑆 :desc) ∋ 𝐷

Γ ⊢ :desc ∋ [:sigma 𝑆 𝐷]

Γ ⊢ :type ∋ 𝑆
Γ ⊢ (⇒ 𝑆 :desc) ∋ 𝐷

Γ ⊢ :desc ∋ [:pi 𝑆 𝐷]
Γ ⊢ keywords ∋ 𝑙 Γ ⊢ (struct 𝑙 :as _ :return :desc) ∋ 𝐷𝑠

Γ ⊢ :type ∋ (𝜇 𝑙 𝐷𝑠)

Γ ⊢ J[:struct 𝑙 𝐷𝑠]K (𝜇 𝑙 𝐷) ∋ [𝑐 𝑥𝑠]
Γ ⊢ (𝜇 𝑙 𝐷𝑠) ∋ [con 𝑐 𝑥𝑠]

Γ ⊢ 𝑒 ∈ 𝑇

“Term 𝑡 synthesizes type 𝑇 in context Γ”

Γ0, x : 𝑇, Γ1 ⊢ x ∈ 𝑇

Γ ⊢ :type ∋ 𝑇 Γ ⊢ 𝑇 ∋ 𝑡

Γ ⊢ (the𝑇 𝑡) ∈ 𝑇

Γ ⊢ 𝑒 ∈ (Π [𝑥 𝑇0] 𝑇1) Γ ⊢ 𝑇1 ∋ 𝑡

Γ ⊢ (𝑒 𝑡) ∈ 𝑇1 [𝑥 ↦→ 𝑡]

Γ ⊢ 𝑒 ∈ (Σ [𝑥 𝑡0] 𝑇 )
Γ ⊢ (𝜋0 𝑒) ∈ 𝑇0

Γ ⊢ 𝑒 ∈ (Σ [𝑥 𝑇0] 𝑇1)
Γ ⊢ (𝜋1 𝑒) ∈ 𝑇1 [𝑥 ↦→ (𝜋0 𝑒)]

Γ ⊢ keywords ∋ 𝑒 Γ, x : (enum 𝑒) ⊢ :type ∋ 𝑇

Γ ⊢ (struct 𝑒 :as x :return𝑇 ) ∈ :type

Γ ⊢ 𝑒 ∈ (enum 𝑣) Γ, x : (enum 𝑣) ⊢ :type ∋ 𝑇 Γ ⊢ (struct 𝑣 :as x :return𝑇 ) ∋ 𝑡

Γ ⊢ (switch 𝑒 :as x :return𝑇 :with 𝑡) ∈ 𝑇 [x ↦→ 𝑒]

Γ ⊢ :desc ∋ 𝐷 Γ ⊢ :type ∋ 𝑋

Γ ⊢ J𝐷K 𝑋 ∈ :type
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ABSTRACT
Many programming languages have functions which implement
universal and existential quantifiers. Typically these are imple-
mented as higher order functions which accept a Boolean predicate
and some sort of iterable and return a Boolean value indicating
whether a predicate is validated over the iterable or rather, whether
a counterexample or witness was encountered. These quantifiers
are elegant to use and allow application code to be written which
closely resembles axiomatic algebraic specifications. A disadvan-
tage is seen when unexpected results occur, e.g., when attempting
to debug user defined predicates. These quantifiers do not have easy
ways of returning the witness or counterexample as such would
typically violate the expected Boolean return value, and thus mod-
ify the program flow or in some cases cause compilation errors.
Users are usually forced to refactor code to avoid the elegant quan-
tifiers in order to debug their code. We present implementations
of universal and existential quantifiers in Clojure, Common Lisp,
Python, and Scala, which conceptually extend the Boolean type
with decorations which are useful not only for debugging but for
mathematical purposes.

CCS CONCEPTS
• Theory of computation → Data structures design and anal-
ysis; Type theory.

KEYWORDS
common lisp,clojure,scala,python,quantifiers

1 OVERVIEW
In this article we present Heavy Booleans, and their implementation
in Clojure [8], Common Lisp [1, 12], Python [13], and Scala [9, 10].
These data structures are values which on the one hand imple-
ment Boolean (true/false) semantics, and on the other hand provide
reflective behavior [6]; i.e., giving access to the witness of an exis-
tential quantifier, ∃𝑎 ∈𝑀, 𝑝 (𝑎), or counterexample of a universal
quantifier [2], ∀𝑎 ∈𝑀, 𝑝 (𝑎).

Heavy Booleans convey information about the counterexample
when universal quantification fails. If ∀𝑎 ∈𝑀, 𝑝 (𝑎) returns false, the
user should be able to ask which counterexample value of𝑀 made
𝑝 false. Dually, if ∃𝑎 ∈𝑀, 𝑝 (𝑎) returns true, the user asks which
value of𝑀 satisfied 𝑝 .

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’25, May 19–20 2025, Zurich
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.14775258

When we designed the system, we had several goals in mind.
The heavy Boolean values should (as much as possible) behave
like Boolean values in Boolean contexts, but should contain reflec-
tive data for debugging or for providing mathematical semantics.
Furthermore, and perhaps most importantly, these Heavy Boolean
values should compose with each other through the Boolean op-
erations of conjunction, disjunction, and negation, and through
concentric use of multiple quantifiers of uniform or mixed types
without loosing critical information.

These ambitious goals provide implementation challenges de-
pending on the programming language, as different languages han-
dle Boolean values differently in primitives such as and , or , not ,
if , etc.. In the Scala and Python languages, we have added behav-
ior to the Heavy Boolean objects themselves so that they behave
in a reasonable way with the built-in equivalents of if , and , and
or . However, in the Clojure and Common Lisp languages, we are
not able to augment the behavior of false and instead we have
created heavy-Boolean-friendly variants of if , and , and or .

On the other hand, using the meta-programming capabilities
of the lisp dialects (Common Lisp and Clojure) we were able to
create a more expressive exists and forall than in the non-
lisp languages. In the Scala and Python versions of exists and
forall , the user is required to provide redundant information.
This redundant information is obviated in the lisp dialects thanks
to their meta-programming layers.

2 CONTRIBUTIONS
Our contributions in this article are libraries for Clojure, Common
Lisp, Python, and Scala implementing the Heavy Boolean protocols.

• Clojure: https://github.com/jimka2001/heavybool/clojure
• Common Lisp: https://github.com/jimka2001/heavybool/
common-lisp

• Python: https://github.com/jimka2001/heavybool/python
• Scala: https://github.com/jimka2001/heavybool/scala

3 QUANTIFIERS IN VARIOUS LANGUAGES
All programming languages which we are concerned with have
built-in predicate functions which implement universal (1) and
existential (2) quantifiers which satisfy DeMorgan’s law (3). This
law allows any proposition stated in terms of a universal quantifier
to be refactored into an equivalent proposition stated in terms of
an existential quantifier and vice versa.
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Universal Quantifier: ∀𝑎 ∈𝑀, 𝑝 (𝑎) (1)
Existential Quantifier: ∃𝑎 ∈𝑀, 𝑝 (𝑎) (2)

DeMorgan’s Law: ∃𝑎 ∈𝑀, 𝑝 (𝑎) ⇐⇒ ¬∀𝑎 ∈𝑀,¬𝑝 (𝑎)
(3)

In Sections 3.1 through 3.4, we look at the syntax of quantifiers
and DeMorgan’s law in four programming languages.

3.1 Clojure
In Clojure the existential quantifier, ∃𝑎 ∈𝑀, 𝑝 (𝑎), is implemented by
the built-in some function as on lines 3 and 2 of Listing 1. The uni-
versal quantifier, ∀𝑎 ∈𝑀, 𝑝 (𝑎), is expressed by the built-in every?

function as on lines 7 and 6 of Listing 1. Furthermore, by DeMor-
gan’s law, Equation (3), lines 10, 11, and 12 are equivalent.

Listing 1: Clojure: Existential and Universal Quantifiers
1 ;; existential quantifiers
2 (some p M)
3 (some (fn [a] (p a)) M)
4

5 ;; universal quantifiers
6 (every? p M)
7 (every? (fn [a] (p a)) M)
8

9 ;; equivalent expressions: DeMorgan's Law
10 (some p M)
11 (not (every? (fn [a] (not (p a))) M))
12 (not (every? (complement p) M))

3.2 Common Lisp
In Common Lisp the existential quantifier, (2), is implemented by
the built-in some function as on lines 3 and 2 in Listing 2. The
universal quantifier, (1), is expressed by the built-in every function
as on lines 7 and 6 in the same listing. Furthermore, DeMorgan’s
law, Equation (3), is verified in that the following expressions on
lines 10, 11, and 12 are logically equivalent.

Listing 2: Common Lisp: Existential & Universal Quantifiers
1 ;; existential quantifiers
2 (some #'p M)
3 (some #'(lambda (a) (p a)) M)
4

5 ;; universal quantifiers
6 (every #'p M)
7 (every #'(lambda (a) (p a)) M)
8

9 ;; equivalent expressions: DeMorgan's Law
10 (some #'p M)
11 (not (every #'(lambda (a) (not (p a))) M))
12 (not (every (complement #'p) M))

3.3 Python
In Python, the built-in functions all and any implement the
universal and existential quantifiers respectively. An example of

the existential quantifier, (2), is shown on line 2 of Listing 3. An
example of the universal quantifier, (1), is shown in the same listing
on line 5. The all and any functions are related by DeMorgan’s
Law in that lines 8 and 9 are equivalent.

Listing 3: Python: Existential and Universal Quantifiers
1 # existential quantifier
2 any(p(a) for a in M)
3
4 # universal quantifier
5 all(p(a) for a in M)
6
7 # equivalent expressions: DeMorgan's Law
8 all(p(a) for a in M)
9 not any(not p(a) for a in M)

3.4 Scala
In Scala the existential quantifier is implemented as a built-in
method exists defined on the Seq class (and on other classes),
while the universal quantifier is implemented as the built-in method
forall . The existential quantifier, can be written as on lines 3
and 2 in Listing 4. The universal quantifier can be written as on
lines 7 and 6. As in the three previous examples, DeMorgan’s law,
Equation (3), is expressed once again (lines 11 and 10).

Listing 4: Scala: Existential and Universal Quantifiers
1 // equivalent existential quantifiers
2 M.exists(p)
3 M.exists{(a) => p(a)}
4

5 // equivalent universal quantifiers
6 M.forall(p)
7 M.forall{(a) => p(a)}
8

9 // equivalent expressions: DeMorgan's Law
10 M.exists(p)
11 !M.forall{(a) => !p(a)}

4 ASSOCIATIVITY EXAMPLE
In Section 3 we examined the simple use of quantifiers. In each case
the quantifier returns a Boolean value which lacks reflective capac-
ity [6]. In this section we look at examples where an unadorned
Boolean value does not suffice. In each case we first look at some
standard techniques for working around this limitation, and in
Section 6 we introduce the Heavy Boolean as a generic solution.

In this section we consider a pedagogical mathematical example
from abstract algebra. A talented researcher, Helen Wheels1, is
writing some code to detect whether a given binary operation, ◦,
is associative on a given finite set,𝑀 . The proposition to verify is
stated succinctly, mathematically as

∀𝑎 ∈𝑀,∀𝑏 ∈𝑀,∀𝑐 ∈𝑀 (𝑎 ◦ 𝑏) ◦ 𝑐 = 𝑎 ◦ (𝑏 ◦ 𝑐). (4)
For example if 𝑀 = {1, 2, 3} and the operation is subtraction,

although other solutions are possible, it would suffice that Helen
1https://www.youtube.com/watch?v=RSWQ0tkxtdk, in real life Hellen Wheels is a
talented comedian who inspires others to excel beyond what some people see as a
handicap.
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find the pair (1, 1, 2) because
−2 = (1 − 1) − 2 ≠ 1 − (1 − 2) = 2 .

4.1 Technique 1: Using Universal Quantifiers
Helen, being a formidable, polyglot programmer, implements Equa-
tion (4) in several programming languages as follows:

Listing 5: Clojure: Implementation of Eq (4)
1 (every? (fn [x]
2 (every? (fn [y]
3 (every? (fn [z] (= (op (op x y) z)
4 (op x (op y z))))
5 M))
6 M))
7 M)

Listing 6: Common Lisp: Implementation of Eq (4)
1 (every #'(lambda (x)
2 (every #'(lambda (y)
3 (every #'(lambda (z)
4 (equal (op (op x y) z)
5 (op x (op y z))))
6 M))
7 M)

Listing 7: Python: Implementation of Eq (4)
1 all(op(op(x,y), z) == op(x, op(y,z))
2 for x in M
3 for y in M
4 for z in M)

Listing 8: Scala: Implementation of Eq (4)
1 M.forall{(x) =>
2 M.forall{(y) =>
3 M.forall{(z) =>
4 op(op(x,y),z) == op(x,op(y,z))}}}

Being an expert programmer, Helen always tests her code thor-
oughly. In this case she tests on a particular example and finds that
it surprisingly returns false . Helen does not know if the operation
really fails to be associative or whether her implementation has
a bug. She knows that for some triple (𝑥,𝑦, 𝑧), the operation (as
coded) is not associative. How can she determine which (𝑥,𝑦, 𝑧)
triple serves as a counterexample so she can look more closely to
understand the discrepancy?

4.2 Technique 2: Using Existential Quantifiers
In Section 4.1, Helen used the built-in universal quantifiers in each
programming language. Thus true is returned when the operation
is found to be associative. However, Helen’s code detected a fail-
ure to be associative; false was returned. Helen attempts to apply
DeMorgan’s law (Eq (3)) to her code, inverting the logic so that it
returns true when the operation is not associative. The advantage

of a true return value is that Helen obtains information in addition
to the Boolean true. For example a triple (𝑥,𝑦, 𝑧) would be true.

Helen exploits the fact that the triple (𝑥,𝑦, 𝑧) is true in the lisp
dialects, Clojure and Common Lisp as shown in Listings 5 and 6.
However, she finds that the technique (Listings 7 and 8) fails for
Python and Scala.

Listing 9: Clojure Listing 5 with Inverted Logic
1 (some (fn [x]
2 (some (fn [y]
3 (some (fn [z] (and (not (= (op x (op y z))
4 (op (op x y) z)))
5 [x y z]))
6 M))
7 M))
8 M)

Listing 10: Common Lisp Listing 6 with Inverted Logic
1 (some #'(lambda (x)
2 (some #'(lambda (y)
3 (some #'(lambda (z)
4 (and (not (equal (op x (op y z))
5 (op (op x y) z)))
6 (list x y z)))
7 M))
8 M)

Listing 11: Broken Python Listing 7 with Inverted Logic
1 # returns True or False, not the counterexample
2 any(op(op(x,y), z) != op(x, op(y,z)) and [x, y, z]
3 for x in M
4 for y in M
5 for z in M)
6
7 # equivalent but more idiomatic
8 any([x, y, z]
9 for x in M
10 for y in M
11 for z in M
12 if op(op(x,y), z) != op(x, op(y,z)))

Listing 12: Broken Scala Listing 8 with Inverted Logic
1 // This code does not compile
2 M.exists{(x) =>
3 M.exists{(y) =>
4 M.exists{(z) =>
5 op(op(x,y),z) != op(x,op(y,z)) && (x,y,z)}}}`

The Python Listing 11 fails because, as documented, any returns
True or False explicitly. In contrast to the lisp dialects, any

unfortunately does not return the first true result it encounters.
The Scala Listing 12 fails to compile, because the function Helen

has given to M.exists... (line 5) is expected to return a Boolean ;
whereas the tuple (x,y,z) is not a Boolean .
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4.3 Technique 3: Sequence of Counterexamples
Helen, being dedicated and determined to find a solution, tries
to refactor the code so that it returns an empty sequence if the
operation is associative, otherwise a sequence of counterexamples
if the operation fails to be associative.

This technique works for all the languages shown but with a
notable disadvantage. Helen is generating exceedingly many coun-
terexamples, when one would suffice to disprove associativity. The
search for counterexamples is an 𝑛3 search. Helen would like to
terminate the search early once a counterexample is found.

Listing 13: Clojure: Sequence of Counterexamples
1 (for [x M
2 y M
3 z M
4 :when (not (= (op (op x y) z)
5 (op x (op y z))))]
6 [x y z])

Listing 14: Common Lisp: Sequence of Counterexamples
1 (loop :for x :in M
2 :nconc (loop :for y :in M
3 :nconc (loop :for z :in M
4 :unless (equal (op (op x y) z)
5 (op x (op y z)))
6 :collect (list x y z))))

Listing 15: Python: Sequence of Counterexamples
1 [(x,y,z) for x in M
2 for y in M
3 for z in M
4 if op(op(x,y), z) != op(x, op(y,z))]

Listing 16: Scala: Sequence of Counterexamples
1 for{x <- M
2 y <- M
3 z <- M
4 if op(op(x,y),z) != op(x,op(y,z))
5 } yield (x,y,z)

4.4 Technique 4: At Most One Counterexample
Not yet admitting defeat, Helen alters Listings 13 through 16 to
terminate the loop on finding the first counterexample.

She again considers Listing 13. This expression, thanks to the
for construct, returns a so-called lazy-sequence of all possible
counterexamples. Helen tests whether the returned sequence is
empty, and if not, calls first to obtain an actual counterexample.
Unfortunately, Helen finds that so-called lazy-sequences in Clo-
jure are greedily-lazy and sadly Clojure has continued to compute
several additional counterexamples even though only the first one
is consumed at the call site. Clojure experts do not consider this

greedy-laziness to be a problem in practice—claiming that is it usu-
ally not a problem, which we interpret (via Demorgan’s Law) to
mean: sometimes IS a problem.

Helen, determined more than ever, addresses the problem of
greedy-lazy-sequences by employing so-called transducers in List-
ing 17. This refactoring further exacerbates the extent to which the
original code and the debugging code are asymmetric.

Listing 17: Clojure: Return one Counterexample
1 (->> (for [x M
2 y M
3 z M]
4 [x y z])
5 (transduce (comp (filter (fn [[x y z]]
6 (not (= (op x (op y z))
7 (op (op x y) z)))))
8 (take 1))
9 conj []))

On to the next programming language, Helen refactors Listing 14
using block / return-from to avoid collecting. This Common Lisp
code now returns nil if the operation is associative; otherwise it
returns a triple, indicating the first counterexample encountered.

Listing 18: Common Lisp: Return one Counterexample
1 (block nil
2 (loop
3 :for x :in M
4 :do (loop
5 :for y :in M
6 :do (loop :for z :in M
7 :unless (equal (op (op x y) z)
8 (op x (op y z)))
9 :do (return-from nil
10 (list x y z))))))

For the next programming language, Python, Helen replaces
the list comprehension from Listing 15 with a call to next List-
ing 19. The code now returns None if the operation is associative;
otherwise it returns a triple which is the first counterexample en-
countered.

Listing 19: Python: Return one Counterexample
1 next(((x,y,z) for x in M
2 for y in M
3 for z in M
4 if op(op(x,y), z) != op(x, op(y,z)),
5 None)

Finally, Helen attacks the Scala Listing 16. She converts the input
sequence M , to a lazy list with a call to .to(LazyList) . Now, the
code in Listing 20 returns a possibly empty, lazy list. The lazy list is
empty if the operation is associative, otherwise the call-site should
invoke the method .first to obtain a counterexample.
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Listing 20: Scala: Return one Counterexample
1 val lazyM = M.to(LazyList)
2 for{x <- lazyM
3 y <- lazyM
4 z <- lazyM
5 if op(op(x,y),z) != op(x,op(y,z))
6 } yield (x,y,y)

4.5 Summary of Standard Techniques
Each of the techniques which Helen has tried solves part of the
problem, but there are significant disadvantages.

• In Technique 3 (Section 4.3) Helen is generating exceedingly
many counterexamples, when one would suffice to disprove
associativity.

• The code in Technique 4 has drastically diverged from He-
len’s first attempt in Listings 5 through 8.

• The code no longer resembles the elegant Equation 4 which
Helen is attempting to verify.

5 HEAVY BOOLEAN SEMANTICS
We briefly and tersely describe the semantics of so-called Heavy
Booleans and in the following sections give examples of their im-
plement in various programming languages.

Let H be the set called Heavy Booleans. Partition H into
H =T ∪F . Call T the truthy values and F the falsey values. Let
𝑡 ∈T , 𝑓 ∈F , and 𝑏 ∈H . Let 𝑆 be an arbitrary set, and ℎ ::𝑠 be a finite
sequence of elements of 𝑆 whose first element is ℎ and remaining
elements are the sequence 𝑠 . Let [] denote the empty sequence. Let
𝑝 :𝑆→ H be a so-called heavy predicate function.

Let W ⊃ {∅} be a set of so-called reasons, and 𝑤ℎ𝑦 :H→W
be a function for which 𝑤ℎ𝑦 :T→W and 𝑤ℎ𝑦 :F→W are both
bijections. Call𝑤ℎ𝑦 (𝑡) a witness and𝑤ℎ𝑦 (𝑓 ) a counterexample. Let
⊥ ∈ F and ⊤ ∈ T , such that such that 𝑤ℎ𝑦 (⊥)=𝑤ℎ𝑦 (⊤)=∅. The
operator ⊢ decorates a Heavy Boolean with an additional reason.

The following axioms hold for unary operator ¬ :T→F
and ¬ :F→T , non-commutative operators ∨ :H×H→H and
∧ :H×H→H , and quantification operators 𝑒𝑥𝑖𝑠𝑡𝑠 and 𝑓 𝑜𝑟𝑎𝑙𝑙 .

𝑤ℎ𝑦 (¬𝑡) = 𝑤ℎ𝑦 (𝑡) (5)
𝑤ℎ𝑦 (¬𝑓 ) = 𝑤ℎ𝑦 (𝑓 ) (6)

𝑓 ∨ 𝑏 = 𝑏 (7)
𝑡 ∨ 𝑏 = 𝑡 (8)
𝑓 ∧ 𝑏 = 𝑓 (9)
𝑡 ∧ 𝑏 = 𝑏 (10)

𝑒𝑥𝑖𝑠𝑡𝑠 (𝑝, []) = ⊥ (11)
𝑓 𝑜𝑟𝑎𝑙𝑙 (𝑝, []) = ⊤ (12)

𝑒𝑥𝑖𝑠𝑡𝑠 (𝑝, ℎ ::𝑠) = (𝑝 (ℎ) ⊢ ℎ) ∨ 𝑒𝑥𝑖𝑠𝑡𝑠 (𝑝, 𝑠) (13)
𝑓 𝑜𝑟𝑎𝑙𝑙 (𝑝, ℎ ::𝑠) = (𝑝 (ℎ) ⊢ ℎ) ∧ 𝑓 𝑜𝑟𝑎𝑙𝑙 (𝑝, 𝑠) (14)

We omit proofs of associativity, well-definedness, DeMorgan’s
Law, equalities such as: ¬(¬ℎ)=ℎ, ¬⊥=⊤, ¬⊤=⊥, and more.

6 HEAVY BOOLEAN VALUES
Helen, being a resourceful programmer, stumbles upon the Heavy
Boolean library at https://github.com/jimka2001/heavybool. She
discovers that it provides a technique allowing her to verify certain
quantified propositions or find counterexamples. She will be able
verify Equation (4), all the while assuring that the code express the
intent and remain symmetric with the mathematical formalism.

In this section we look at the implementation of Heavy Booleans
in each of our target programming languages. A Heavy Boolean
is an object which represents true or false in a Boolean context,
but has meta data. The primary purpose of a Heavy Boolean is to
be generated by universal and existential quantifiers. Because of
the way Boolean values are treated in the various programming
languages the design of these Heavy Boolean objects is subtly
different in each case.

6.1 Clojure

Listing 21: Clojure Quantifier Syntax
1 (+forall [a M]
2 (+forall [b M]
3 (+forall [c M]
4 (= (op (op a b) c)
5 (op a (op b c))))))
6

7 ;; equivalently by macro expansion
8 (+forall [a M
9 b M
10 c M]
11 (= (op (op a b) c)
12 (op a (op b c))))

In Clojure, Helen represents Eq (4) as in Listing 21.
If op is the + (addition) function, then this universal quantifier

is satisfied it returns a Heavy Boolean indicating true. However, if
op is the - (subtraction) function, then the universal quantifier
returns a value indicating false, but which also indicates the coun-
terexample: 𝑎 = 0, 𝑏 = 0, and 𝑐 = 1. Notice that since +forall and
+exists are macros, the macro has access to the variable names,
a , b , and c , and hence is able to incorporate them into the return
value. As will be seen in Sections 6.3 and 6.4, this subtlety is missing
from the Python and Scala implementations of Heavy Boolean as
those implementations do not include any meta-programming.

Listing 22: Clojure Quantifier Use in Boolean Context
1 (+if (+or (+forall [a M]
2 (> a 10))
3 (+exists [a M
4 b M]
5 (< (* a b) 100)))
6 "yes"
7 "no")

In both Clojure and in Common Lisp (Section 6.2) the language
dictates which values are false and that all other values are true. If
Helen attempts to use a heavy-bool in a Boolean context, it will
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be considered true. For this reason, we provide wrappers around
Boolean operators +if , +or , +and , +not and a few others. An
example is shown in Listing 22.

Note that lines 17 and 9 of Listing 23 are exactly equivalent as
the latter is a macro expansion of the former. Arguably line 9 better
emphasizes how Heavy Booleans compose.

Listing 23: Clojure Quantifier Sample Output
1 (def M [0 1 2 3 4])
2

3 (+forall [a M
4 b M
5 c M]
6 (= (+ (+ a b) c)
7 (+ a (+ b c)))) => [true ()]
8

9 (+forall [a M
10 b M
11 c M]
12 (= (- (- a b) c)
13 (- a (- b c)))) => [false ({:witness 0, :var a}
14 {:witness 0, :var b}
15 {:witness 1, :var c})]
16

17 (+forall [a M]
18 (+forall [b M]
19 (+forall [c M]
20 (= (- (- a b) c)
21 (- a (- b c)))))) => [false
22 ({:witness 0, :var a}
23 {:witness 0, :var b}
24 {:witness 1, :var c})]

6.2 Common Lisp
The Heavy Boolean implementation in Common Lisp, Listing 24,
resembles that in Clojure, except that Heavy Boolean objects are rep-
resented by instances of the CLOS [7] class heavy-bool and in par-
ticular its two direct subclasses, heavy-true and heavy-false .

Listing 24: Common Lisp Quantifier Sample Output
1 (setf M '(0 1 2 3 4))
2

3 (+forall (a M
4 b M
5 c M)
6 (= (+ (+ a b) c)
7 (+ a (+ b c)))) => #<HEAVY-TRUE T>
8

9 (+forall (a M
10 b M
11 c M)
12 (= (- (- a b) c)
13 (- a (- b c)))) => #<HEAVY-FALSE F
14 ((:WITNESS 0 :VAR A)
15 (:WITNESS 0 :VAR B)
16 (:WITNESS 1 :VAR C))>

6.3 Python
In Python we have implemented Heavy Booleans with the
class named HeavyBool with two subclasses HeavyTrue and
HeavyFalse . The Python language has an interesting feature
not available to the lisp dialects discussed above. We define the
__bool__ method on HeavyBool so that instances of HeavyTrue
and HeavyFalse behave like the Boolean true and false respec-
tively in Boolean contexts, such as with if , and , or , etc..

An unfortunate (but documented) feature of the any function
is that it explicitly returns True if any of the generated element
is true and False otherwise. Likewise, all returns False on
encountering a false element, otherwise returns True . I.e., when
Helen calls any or all , she cannot detect which element was
the culprit of early termination. To solve this problem, we have
implemented anyM and allM . The anyM function iterates over its
input, expecting to find instances of HeavyBool , and returns the
first instance of HeavyTrue it encounters, otherwise returns an
undecorated instance of HeavyFalse . Analogously, allM returns
the first HeavyFalse instance encountered, otherwise returns an
undecorated instance of HeavyTrue .

Using allM , Helen implements something similar to Listings 23
and 24. The anyM functions works analogously.

Listing 25: Python: Existential Quantifier
1 allM(HeavyBool(((a - b) - c) == (a - (b - c)),
2 {"a":a, "b":b, "c":c})
3 for a in M
4 for b in M
5 for c in M) => False[[{'a': 0,
6 'b': 0,
7 'c': 1}]]
8
9 # Alternative to annotate only counterexamples
10 forallM(M, lambda a:
11 forallM(M, lambda b:
12 # Cannot put arbitrary code here.
13 # May only use single expression.
14 # Cannot declare local variables.
15 forallM(M, lambda c:
16 HeavyBool(((a - b) - c) == (a - (b - c))
17 ).annotateFalse({"a":a, "b":b, "c":c}))))
18
19 => False[[{'a': 0, 'b': 0, 'c': 1},
20 {'witness': 1},
21 {'witness': 0},
22 {'witness': 0}]]
23
24 # python quantifiers use in Boolean context
25 if allM(HeavyBool(a > 10)
26 for a in M) or \
27 anyM(HeavyBool(a*b < 100)
28 for a in M
29 for b in M):
30 print("yes")
31 else:
32 print("no")

When contrasting Listing 25 line 2 with Listings 23 and 24,
we see that Helen must construct the reason argument herself
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{"a":a, "b":b, "c":c} whereas the macro-based lisp imple-
mentation of +forall and +exists auto-construct it.

While the code in Listing 25 lines 1 through 5 resembles corre-
sponding code using the built-in all (e.g., Listing 11), each iteration
wastefully constructs a HeavyBool with a populated reason ar-
gument. The code in Listing 25 line 17, as maladroit as it is, shows
how to annotate the HeavyBool only in the counterexample case.

Even if some aspects of the Python implementation of Heavy
Booleans are awkward, some parts do seem elegant: e.g., the fact
that HeavyBool behaves like built-in bool with respect to many
built-in operators—illustrated in Listing 25 lines 24 through 32. We
have not implemented heavy-Boolean-specific versions of if , and ,
etc.. as was the case in Listing 22.

The forallM (and existsM ) implementation restricts Helen to
the egregiously limited lambda syntax, prohibiting most coding
patterns including prohibition of variable declarations (See List-
ing 25). This syntax is not imposed on the lisp programmer, as the
macros +exists and +forall allow arbitrary code in the given
code body.

Listing 26: Scala Quantifier Syntax
1 val M = 0 to 4
2

3 forallM("a",M){(a) =>
4 forallM("b",M){(b) =>
5 forallM("c",M){(c) =>
6 (a - b) - c == a - (b - c)}}}
7

8 => false[(witness->0, tag->a);
9 (witness->0, tag->b);
10 (witness->1, tag->c)]
11

12 // used in Boolean context
13 if (forallM("a",M){(a) =>
14 forallM("b",M){(b) =>
15 forallM("c",M){(c) =>
16 (a + b) + c == a + (b + c)}}})
17 "yes"
18 else
19 "no"
20

21 => "yes"
22

23 (forallM("a", M){(a) => a < 10}
24 && existsM("a", M){(a)=>
25 existsM("b", M){(b) =>
26 a*b < 100}})
27

28 => true[(witness->0, tag->a); (witness->0, tag->b)]

6.4 Scala
In Scala we implemented Heavy Booleans as an Algebraic Data
Type (ADT) [11] named HeavyBool . An ADT in Scala is a class for
which the compiler can assume all subclasses are fixed and known
at compile time. The two subclasses HeavyTrue and HeavyFalse

implement Heavy Boolean true and false. The HeavyBool class

provides methods forallM and existsM which can be used as
shown in Listing 26.

As is seen in Listing 26, the forallM method (and also existsM )
takes a string argument where Helen must specify the variable
name. This redundancy is because we are not using any Scala meta-
programming [3] to auto-extract the variable name from the code.
Meta-programming in Scala is exceedingly complicated, far beyond
our expertise, and makes application code incompatible between
major Scala compiler releases.

Instances of HeavyBool may be used in Boolean contexts such
as with if , and , or , etc.. as seen in Listing 26 lines 13 through 19.

7 EXTENDED USE CASE
The example discussed in Section 3 may not be convincing to pro-
grammers who are more concerned with concrete program devel-
opment. We provide here a second example and solution which
illustrates how the Clojure implementation of heavy-bool solves
an annoying and perhaps serious limitation in unit testing.

Helen Wheels is now attempting to write a unit test using the
standard, well-loved clojure.test testing framework. She begins
bywriting the test shown in Listing 27. The test follows the principle
of PBT (property based testing) [4, 5] which rather than testing
specific examples, instead tests expected invariants of functions
based on randomly generated or exhaustively generated input data.

Listing 27: Test Case Using Standard API
1 (deftest t-plus-associative
2 (doseq [p1 polynomials
3 p2 polynomials
4 p3 polynomials]
5 (is (sut/==
6 (sut/+ (sut/+ p1 p2) p3)
7 (sut/+ p1 (sut/+ p2 p3)))
8 (format "non-associative: p1=%s\np2=%sp3=%s"
9 p1 p2 p3))))

In Clojure, the sut/ prefix is used to indicate symbols from
the System Under Test. The unit test tries to verify that the func-
tion sut/+ is associative. If a counterexample is found, the side-
effecting call to clojure.test/is (line 5) registers the counter
example, but the doseq loop continues. Thus, if 𝑛 is the length
of polynomials , then worst case the loop will report 𝑛3 many
violations. If running interactively, the IDE freezes while trying
to construct a formatted string annotating thousands of almost
identical counterexamples.

7.1 1st Vain Attempted Fix, :while
In the first attempt to fix this problem, Helen evokes the :while
modifier as shown on line 5 in Listing 28.

This attempt works somewhat, but :while does not exactly
stop the iteration. Instead, the :while modifier causes the inner
most loop p3 to exit, evoking the successive iteration of p2 . The
computation of success values of the expression continues for some
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Figure 1: Example Test Failure

time after the first false value of (is ...) . The end effect is that
we’ll have 𝑛2 rather than 𝑛3 many failures.

Listing 28: 1st Vain Attempt to Fix Problem in Listing 27
1 (deftest t-plus-associative
2 (doseq [p1 polynomials
3 p2 polynomials
4 p3 polynomials
5 :while (is (sut/==
6 (sut/+ (sut/+ p1 p2) p3)
7 (sut/+ p1 (sut/+ p2 p3)))
8 (format
9 "non-associative: p1=%s\np2=%sp3=%s"
10 p1 p2 p3))]))

Figure 1 is a simpler example which shows that the
(doseq ... :while ....) loop does not abort on the first fail-
ure.

7.2 2nd Vain Attempted Fix, every?
Helen wants the test to simply fail on the first violation, so she
rewrites the code as shown in Listing 29, using the built-in universal
quantifier, every? .

Listing 29: 2nd Vain Attempt to Fix Problem in Listing 27
1 (deftest t-plus-associative-b
2 (is (every? (fn [p1]
3 (every? (fn [p2]
4 (every? (fn [p3]
5 (sut/== (sut/+ (sut/+ p1 p2) p3)
6 (sut/+ p1 (sut/+ p2 p3))))
7 polynomials))
8 polynomials))
9 polynomials)
10 ;; regrettably, p1, p2, and p3 are out of scope
11 "WHAT TEXT TO PUT HERE?"))))

By pulling the clojure.test/is outside the loop, the test fails
early, when it discovers one failure. However, Helen cannot con-
struct the second argument of ‘is‘ (line 11) which should indicate
the values of p1 , p2 , and p3 constituting the counterexample.

7.3 3rd Vain Attempted Fix, some
Helen notices that part of the problem with Listing 29 was that
although the execution stops as soon as a counterexample was
found, the iterations variables were no longer in scope. She decides
to apply DeMorgan’s law as was done in Listing 9, and refactor the
test, writing Listing 302.

Listing 30: 2nd Vain Attempt to Fix Problem in Listing 27
1 (deftest t-minus-associative
2 (is (empty?
3 (some (fn [[x y z]]
4 (when (not (= (op x (op y z))
5 (op (op x y) z)))
6 [x y z]))
7 (for [p1 polynomials
8 p2 polynomials
9 p3 polynomials]
10 [p1 p2 p3])))))

This refactoring leads to a successful detection of violation of
associativity by displaying a counterexample.
expected: (empty?

(some
(fn [[x y z]]

(when (not (= (op x (op y z)) (op (op x y) z)))
[x y z]))

(for [p1 M p2 M p3 M] [p1 p2 p3])))
actual: (not (empty? [{0 1} {} {0 1}]))

Even though a counterexample is successfully discovered, the
cost is that Helen refactored the code so that diverged from the
mathematical expression (Eq 4) she was attempting to verify.

2Thanks to Ed Bowler aka https://github.com/l0st3d for providing this clever solution
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7.4 Proposed Fix, heavy-bool
Using the heavy-bool library, Helen writes the test shown in
Listing 31.

Listing 31: Proposed Fix for Problem in Listing 27
1 (deftest t-plus-associative-b
2 (is (hb/+bool
3 (hb/+forall [p1 polynomials
4 p2 polynomials
5 p3 polynomials]
6 (hb/+heavy-bool (sut/==
7 (sut/+ (sut/+ p1 p1)
8 p3)
9 (sut/+ p1
10 (sut/+ p2 p3))))))))

If this test fails, we’ll see a message such as the following. Cryptic,
but all the information is there.

The :var and :witness tags of the error message indicates
that when p1 = {0 1} and p2 = {} and p3 = {0 1} the asso-
ciativity fails. The :associative false key/value pair indicates
that it is the associativity check which is failing.

Fail in t-plus-associative-b
hb: plus associativity

expected: (hb/+bool
(hb/+forall
[p1 polynomials
p2 polynomials
p3 polynomials]

(hb/+heavy-bool
(sut/==
(sut/+ (sut/+ p1 p1) p3)
(sut/+ p1 (sut/+ p2 p3))))))

actual: (not
(hb/+bool
[false
({:var p1, :witness {0 1}}
{:var p2, :witness {}}
{:var p3, :witness {0 1}})]))

8 CONCLUSION
The existential and universal quantifiers offered by the Heavy
Boolean implementations provide useful alternatives to the built-in
quantifiers of the languages we have investigated: Clojure, Com-
mon Lisp, Python, and Scala. In the lisp dialects the quantifiers
+exists and +forall provide expressions which closely match
the mathematical notation, express the intent, and abort an other-
wise polynomial complexity search once a witness or counterexam-
ple is found. In addition, the quantifiers provided in lisp, provide
additional elegance in that they provide useful information such as
variable names allowing reflection for debugging or constructing
error messages. A limitation of the lisp dialects is that they do not
support overloading false values, thus the heavy-boolean objects
cannot be used in the ordinary Boolean contexts such as if , cond ,

and , or , not , etc.. Because of this limitation, the packages provide
wrapped versions such as +if , +and , etc..

The Python and Scala languages do allow extending Boolean
values, including false, which allows Heavy Boolean objects to
be used in place of built in Boolean primitives such as if , and ,
etc.. However, the lack of meta programming means the user must
provide redundant information such as variable names.

As explained in Section 6.3 the Python implementation imposes
strict limitation on user expressiveness which is not an inconve-
nience experienced by the lisp programmer.
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Abstract
Artificial neural networks (ANN) and deep learning (DL) are promi-
nent areas in artificial intelligence and specifically machine learn-
ing. This paper provides a brief perspective on a respective set of
frameworks and libraries as potential options to be applied using
Common Lisp. We discuss a targeted selection and provide a brief
categorization as well as illustrating implementation examples. We
conclude with a discussion of open issues and further perspectives.

CCS Concepts
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Neural networks.

Keywords
Common Lisp, Deep Learning, Framework, Library, Integration

1 Introduction
Common Lisp [25, 46, 47] features a flexible and powerful approach
for solving complex problems, in particular due to its extensibility
and exploratory as well as dynamic development capabilities. It has
been successfully applied inmany areas of artificial intelligence (AI),
in particular symbolic AI, e. g., in knowledge representation and
reasoning [17, 18, 24], expert systems [36, 41], planning [4, 16], theo-
rem proving [29, 34], robotics [27, 51], and computer vision [44, 45].
While Common Lisp is also being used in data analysis and machine
learning, in areas such as deep learning most frameworks and/or
libraries focus on implementations via programming languages
such as Python [49], R [37] or C++ [26]. However, for approaching
deep learning using Common Lisp there are different options being
enabled with the availability of specific frameworks and different
interfaces: With its strengths, e. g., in rapid-prototyping, developing
complex applications [30], its symbolic processing capabilities, and
the availability of industrial strength compilers (e. g., Steel Bank
Common Lisp, SBCL) [38] for creating efficient (native) code, ap-
proaches integrating with Common Lisp can potentially provide
options beyond those above. Furthermore, this also relates to im-
plementing and using targeted domain specific languages which
enable advanced approaches in dynamic and exploratory program-
ming, interactive experimentation as well as rapid prototyping,
which is often crucial, e. g., in teaching and educational contexts.
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In this paper, we focus on ANN and DL frameworks enabling
the application of Deep Learning using Common Lisp. These, in
particular, relate to frameworks being directly implemented in,
or allowing access from Common Lisp such that Deep Learning
approaches can be implemented using existing libraries. Regarding
the level of integration there are different options: On the one
hand, for example, basic computational components facilitating
fast matrix multiplication can be integrated via foreign function
interfaces while higher level machine learning is then implemented
in Common Lisp. On the other hand, existing (foreign) libraries
could be integrated at higher levels, such that only a thin Common
Lisp API is implemented on top. Both approaches favor specific
advantages as well as disadvantages.

Overall, we present a brief perspective towards targeted ap-
proaches, sketch and discuss implementation examples, and outline
open issues and perspectives. In particular, we aim to target frame-
works which are readily accessible in the language for enabling
direct access and customization of the respective framework com-
ponents, i. e., architecture and functional interface. Furthermore,
we also address options for hybrid approaches, e. g., using loose cou-
pling to frameworks implemented in other languages, or a tighter
coupling using foreign function interfaces. While this typically
allows the extension of the respective application programming in-
terface (API), providing domain specific languages using Common
Lisp, and building on existing efficient libraries, e. g., implemented
in C/C++, such approaches typically only favor extensibility on the
mid-level to higher-level API.

Then, such facilities allow efficient and effective development
and deployment and can provide extensible approaches for imple-
mentation. Using these, for example, we can potentially address
research on new deep learning/symbolic architectures, support
teaching on those and further advanced concepts in deep learning
frameworks and optimization, as well as enable further use in com-
plex Common Lisp AI and ML applications. In general, for example,
advanced approaches such as neuro-symbolic learning methods or
physics-informed machine learning approaches could benefit from
such a (deep) integration, regarding the adaptation and integration
into learning processes, general extensibility of the respective basic
machine learning components, and overall system integration.

The rest of the paper is structured as follows: Section 2 starts
with a brief summary of some background on deep learning, before
we set out to describe exemplary fundamental as well as related
frameworks. Afterwards, Section 3 presents a brief perspective on
deep learning using Common Lisp, discussing frameworks and
approaches, which are complemented by brief exemplary imple-
mentation sketches. Next, Section 4 provides a discussion on those.
Finally, Section 5 concludes with a summary and outlines several
interesting open issues and further perspectives
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2 Deep Learning
Below, we first briefly sketch the background of artificial neural
networks as well as Deep Learning. After that, we summarize some
general frameworks for Deep Learning, before we focus on the Com-
mon Lisp based ones in the next section. Finally, we discuss related
frameworks for Common Lisp both for fundamental components
for Deep Learning as well as for general machine learning.

2.1 Background
In the area of AI and machine learning, DL focuses on ANNs that
are made up of relatively simple computational nodes, i. e., neurons
arranged in layered network structures with many connections
depending on the applied architecture [32, 42]. Artificial neural net-
works were initially inspired by biological neural networks in the
human brain [31, 58]. A neural network can be regarded as a compo-
sition of linear and specifically non-linear mathematical functions,
such that (composed) function(s) are assigned to the layers of the
network, enabling learning complex functions. Essentially, without
non-linearity, a neural network would only be able to model linear
functional relationships. The resulting function, modeled by the
network structure, transforms input data into respective output
data. During learning with known input-output data relations the
internal parameters (so-called weights) of the neurons of the net-
work are adapted. This is done using the so-called backpropagation
algorithm [39] which utilizes a specific loss (or cost) function to
estimate the error between expected and given output which is
then backpropagated through the network’s structure. The obvious
goal is to minimize the loss (or cost) function. Backpropagation
utilizes the gradient of the loss function for adjusting the network
parameters (weights) via gradient descent; in practice often a fur-
ther optimization algorithm such as stochastic gradient descent
is applied. The output of a neural (deep) network is obtained by
forward propagation, i. e., through feeding the input data through
the network, layer by layer, e. g., in order to obtain a prediction. For
a more detailed discussion, we refer to [15, 32, 42, 48].

From this brief description, it becomes obvious that there are
certain internal parameters which are important for implementa-
tion but also for tweaking and adapting algorithms, e. g., learning
methods. This includes, e. g., the types of nodes contained within an
ANN, layer and connection structures, the weights of the network,
loss and regularization functions, the optimization strategies, etc.

Fundamental components for implementation include methods
for handling vectors, arrays - and in general tensors, for fast opera-
tions on those, in particular, multiplication; essentially this relates
to supporting fast linear algebra operations on vectors, matrices
and tensors. For these, the respective frameworks either implement
this by themselves, or make use of high-performance libraries for
linear algebra. Also, auto-differentiation is rather important, e. g.,
regarding gradient descent and (dynamic) computational graphs.
Regarding computational efficiency, in addition to typical CPU pro-
cessing, graphics processing units (GPU) can be applied for enabling
highly performant calculations, provided by respective toolkits for
such processing units. Compared to using only CPU processing,
this can speed up calculations considerably [33]. Another practi-
cal point for deployment often also includes mobile devices with
specific – often resource-constrained – requirements, e. g., [7, 56].

2.2 Overview: Common Frameworks
There is a variety of frameworks for DL, c. f., [13, 50]. Common
frameworks (mostly in Python/C++/Java) include, e. g., Tensor-
Flow [1, 2], PyTorch [35], Keras [8], JAX [6], and DeepLearning4J.

• TensorFlow1 is one of the most prominent open-source Deep
Learning frameworks. It facilitates the creation, training, and
deployment of DL models via a flexible computational graph
structure, and also supports both CPU and GPU computation.
It also features a variant (TensorFlow Lite) for mobile and
embedded devices, and also includes a C interface.2

• PyTorch3 is also one of the most prominent open source
Deep Learning framework, which also supports CPU and
GPU computation, and also provides a C++API/interface4. In
particular, PyTorch provides dynamic computational graph
construction for DL modeling and implementation. There is
also some support for enabling models on mobile devices.5

• JAX6 is another open-source framework for fast numerical
computing which can also be applied for DL. It offers au-
tomatic differentiation together with GPU acceleration for
optimizing the performance of complex numerical computa-
tions, thus addressing the basic DL components directly.

• Keras7 is another major framework abstracting on a higher-
level API for ease of use, modular high-level implementation
and fast prototyping. Keras supports different backends such
as those mentioned above (TensorFlow, PyTorch, and JAX).
It also allows for deploying models an mobile devices.

• Eclipse DeepLearning4J8 is a framework for DL in Java. It
includes a variety of tools for preprocessing as well, in addi-
tion to DL modeling. It features GPU support, and can also
be applied on mobile devices.

2.3 Related Frameworks
For DL in Common Lisp, there is a large number of related frame-
works, e. g., focusing on DL fundamentals such as linear algebra and
fast matrix multiplication functionality. Here, often LAPACK [11] /
BLAS [14] as fundamental math libraries for scientific computing,
e. g., implemented in OpenBLAS9 [53] are included. For Common
Lisp, e. g., LLA10, magicl11 or MGL-MAT12 are available. Further-
more, there are general machine learning frameworks, e. g., clml13
or cl-mlep14. However, those do not focus on DL. Finally, related
frameworks include general parallel computing frameworks, e. g.,
Petalisp15 [19–21] for which implementing DL is possible. Com-
pared to those frameworks discussed above, this typically requires a
higher-level approach (e. g., [23] built on an early Petalisp version).
1https://github.com/tensorflow/tensorflow
2https://www.tensorflow.org/install/lang_c
3https://github.com/pytorch/pytorch
4https://pytorch.org/cppdocs/
5https://pytorch.org/mobile/home/
6https://github.com/google/jax
7https://github.com/keras-team/keras
8https://github.com/deeplearning4j/deeplearning4j
9https://www.openblas.net/
10https://github.com/Lisp-Stat/lla
11https://github.com/quil-lang/magicl
12https://github.com/melisgl/mgl-mat
13https://github.com/mmaul/clml
14https://github.com/fzalkow/cl-mlep
15https://github.com/marcoheisig/Petalisp
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3 Deep Learning using Common Lisp
Below, we briefly summarize options regarding DL using Common
Lisp. We discuss three frameworks, distinguishing between one
which is specifically implemented in Common Lisp regarding Deep
Learning and thus allows direct integration. In addition, we discuss
two prominent options regarding a Common Lisp – Python bridge
for enabling access to some of the general (Python) frameworks
discussed above. Hence, those frameworks are not targeted ones for
DL, but for enabling access to and/or integration of the respective
Python libraries. In that sense, they do not directly provide deep
learning methods but facilitate access to such. Therefore, they en-
able a relatively flexible selection of deep learning libraries. In that
sense, they thus, in principle, also allow users to harness the large
set of available options specifically for Python as outlined above.

In summary, as discussed in [3], there have been previous ap-
proaches for connecting Common Lisp to Python – enabling to
leverage respective frameworks and libraries. In particular, the
Py4CL16 framework facilitates calling Python from Common Lisp
using a subprocess, in a stream-based interprocess communication
(IPC) approach. Building on that, the library py4cl217 incorporates
Python’s introspection capabilities to further ease the import of
function signatures, also allowing a more flexible type mapping. As
discussed below, Py4cl2-CFFI18 is a successor which establishes
an FFI bridge to Python libraries using the C-API of CPython. As
shown in [3] this enables a more efficient approach concerning
run-time, compared to its predecessor libraries/frameworks. For
a more detailed discussion, we refer to [3]. In the following, we
will briefly present an example using Py4CL and Py4cl2-CFFI, thus
distinguishing between a stream-based vs. an approach based on
foreign function interface (FFI) access.

A brief overview of the considered approaches is given in Table 1.
We distinguish between a low-level vs. high-level API (integration)
in Lisp. This is also reflected regarding the extensibility of the
respective frameworks, where those integrating Python also need to
be extended in Python regarding the low-level functionality, while
overall (higher-level) extensibility can be enabled via Common Lisp.

Table 1: Selected framework options for Common Lisp en-
abling direct or mediated integration of DL libraries

MGL Py4CL Py4CL-CFFI
Low/High Level Low/High High High
Lisp / Bridge Common Lisp Bridge Bridge

(stream-based) (FFI-based)
Basic Models MLP, RNN, depends depends

RBM, DBM, on the on the
DBN, GP used used

Backend/GPU via CL-CUDA library library
Extensibility Common Lisp Common Lisp Common Lisp

(+ Python) (+ Python)

16https://github.com/bendudson/py4cl
17https://github.com/digikar99/py4cl2
18https://github.com/digikar99/py4cl2-cffi

3.1 MGL
MGL is a machine learning library, providing several basic models
for DL, including

• Backpropagation neural networks [32, 42]: Feed-forward
multi-layer perceptron (MLP) networks, as well as recurrent
neural networks (RNN).

• Boltzmann Machines [40, 55]: Restricted Boltzmann Ma-
chines (RBM, Deep Boltzmann Machines (DBM), as well
as Deep Belief Networks (DBN).

• Gaussian processes [10, 43]: These are implemented using
the MGL components, in particular using a feed-forward
neural network Gaussian Processes.

Listing 1: MGL DL (MNIST) example, adapted from: https:
//github.com/melisgl/mgl/blob/master/example/mnist.lisp
(defun build-relu-mnist-mlp (&key (n-layer-1 256)

(n-layer-2 256)
(n-layer-3 256))

(build-fnn (: class 'mnist-mlp :max-n-stripes 100)
(inputs (->input :size 784 :dropout 0.2))
(layer1-activations
(->activation inputs :name 'layer1 :size n-layer-1))

(layer1* (->relu layer1-activations ))
(layer1 (->dropout layer1 *))
(f2-activations
(->activation layer1 :name 'layer2 :size n-layer-2))

(layer2* (->relu layer2-activations ))
(layer2 (->dropout layer2 *))
(f3-activations
(->activation layer2 :name 'layer3 :size n-layer-3))

(layer3* (->relu layer3-activations ))
(layer3 (->dropout layer3 *))
(prediction (build-softmax layer3 ))))

(defun build-softmax (inputs)
(->softmax-xe-loss
(->activation inputs :name 'classification :size 10)
:name 'classification ))

MGL features GPU support via CL-CUDA19 and relies on MGL-
MAT supporting efficient multi-dimensional array computation.
MGL supports several basic models as outlined above, in particular
feed-forward as well as recurrent neural networks, and Boltzmann
machines. In short, feed-forward networks, for example, are com-
posed of a set of Lumps (corresponding to layers) which can also be
composite lumps (CLUMPS) composed of several components thus
forming a network by itself. In this way, more complex structures
can be compiled. Also, different activation functions, (e. g., recti-
fied linear activation – relu or softmax), loss, and regularization
(e. g., dropout) are supported, in addition to different optimization
strategies. Furthermore, MGL also supports several standard ma-
chine learning components such as methods for sampling, model
training, accuracy estimation, and validation. Listing 1 shows an
example for the classic MNIST dataset [12]: Here, a three-layerMLP
network is constructed for an 28 × 28 input size in order to classify
the data and obtain an output (in terms of 10 different classes) –
relating to the task of classifying input data of handwritten digit
images into 10 classes, which relates to the individual 10 digits.
For that, three fully connected layers of (default) 256 nodes are
constructed, also including specific dropout layers (for excluding
specific nodes in computation regarding regularization) and relu
activation functions.
19https://github.com/takagi/cl-cuda
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Listing 2: Py4CL Neural Network (CNN) example – i. e., a Common Lisp version of the Keras MNIST example; adapted from
https://github.com/keras-team/keras/blob/master/examples/demo_mnist_convnet.py
(defpackage :py4cl-example (:use :cl :py4cl))
(in-package :py4cl-example)

(import-module "numpy" :as "np")
(import-module "keras")
(import-module "keras.layers" :as "layers")
(import-module "keras.datasets.mnist")
(import-module "keras.utils")

(defparameter *num-classes* 10)
(defparameter *input-shape* '(28 28 1))

(let (( score nil))
(remote-objects

(let* ((data (keras.datasets.mnist:load_data )) ;; ((x-train y-train) (x-test y-test))
(x-train (np:expand_dims (chain data ([] 0) ([] 0) (__truediv__ 255)) -1))
(y-train (keras.utils:to_categorical (chain data ([] 0) ([] 1)) *num-classes *))
(x-test (np:expand_dims (chain data ([] 1) ([] 0) (__truediv__ 255)) -1))
(y-test (keras.utils:to_categorical (chain data ([] 1) ([] 1)) *num-classes *))
(batch-size 128) (epochs 3) (model (keras:sequential )))

(python-method model 'add (layers:input :shape *input-shape *))
(python-method model 'add (layers:conv2d :filters 32 :kernel_size '(3 3) :activation "relu"))
(python-method model 'add (layers:maxpooling2d :pool_size '(2 2)))
(python-method model 'add (layers:conv2d :filters 64 :kernel_size '(3 3) :activation "relu"))
(python-method model 'add (layers:maxpooling2d :pool_size '(2 2)))
(python-method model 'add (layers:flatten ))
(python-method model 'add (layers:dropout 0.5))
(python-method model 'add (layers:dense *num-classes* :activation "softmax"))

(print (python-method model 'summary ))

(chain model (compile :optimizer "adam" :loss "categorical_crossentropy" :metrics #("accuracy")))
(chain model (fit x-train y-train :batch_size batch-size :epochs epochs :validation_split 0.1))

(setf score (chain model (evaluate x-test y-test :verbose 0)))))
(format t "Test loss: ~A~%" (chain score ([] 0)))
(format t "Test accuracy: ~A~%" (chain score ([] 1))))

3.2 Python DL Integration Using Py4CL
As outlined above, there are also options beyond directly implement-
ing/building on libraries in Common Lisp (i. e., as a deep coupling
of DL approaches in our context) by a more loose coupling via us-
ing frameworks/libraries implemented in other languages/system
which are made accessible to be used via Common Lisp. Here, in
particular, this relates to C++ and/or Python-based options, where,
e. g., either an approach based on foreign function interface (FFI) in-
tegration or stream-based inter-process communication approaches
are possible. This is the approach taken by Py4CL which was one
of the earlier options for connecting between Common Lisp and
Python, thus allowing access to libraries in the Python ecosystem.

Essentially, Py4CL uses a stream-based approach for connecting
Common Lisp to interact with Python code, such that the Common
Lisp process communicates with a separately launched (external)
Python process. This is the approach which we sketch in the fol-
lowing. Here, essentially when starting Py4CL a connection from
the Common Lisp system to an (external) Python process is ini-
tiated, which allows for importing Python function and modules,
function/method calls and respective instantiations of data and ob-
jects. One challenge is then the exchange/communication in terms
of data/objects which can either be done via value or reference –
enabling or preventing respective tighter integration, as already
briefly discussed above.

Listing 2 shows a simple example of a DL model – again for the
MNIST dataset using a convolutional neural network architecture:
The Py4CL framework is applied using Keras (in Python), illustrat-
ing the respective Py4CL primitives. The model is constructed and
trained (in the Python process) while the results can be accessed
via the Py4CL connection in Common Lisp. In the example, the
respective Python modules are first imported to be accessible in
the Common Lisp system. Then, data is first loaded and prepro-
cessed. Next, the model is constructed via the Keras sequential API,
adding the different convolutional network layers. Again, relu acti-
vation, pooling (for downsampling, data reduction), final dropout
and flatten layer (turning its respective input from the convolu-
tional/pooling layers into a single vector), followed by the softmax
activation as before. Finally, the model is trained and evaluated.

The example illustrates one important point, which is valid in
general for any such approaches where such a loosely coupled
framework is applied: In the example, the py4cl:remote-objectsmacro
is used for keeping the data/objects in the macro’s scope in Python,
such that only references (handles) are passed to Common Lisp.
This enables an efficient approach – otherwise the referenced data
structures would have to be converted, i. e., serialized and passed
via stream-communication, which is rather infeasible for large ob-
jects/data. The example also shows how the result of an evaluation
(the score) can then be evaluated further in Common Lisp.
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Listing 3: Py4CL2-CFFI Neural Network (CNN) example – i. e., a Common Lisp version of the Keras MNIST example; adapted
from https://github.com/keras-team/keras/blob/master/examples/demo_mnist_convnet.py
(defpackage :py4cl2-cffi-example (:use :cl :py4cl2-cffi))
(in-package :py4cl2-cffi-example)

(defun py-sym (name)
(if (stringp name)

name
(string-downcase (symbol-name name ))))

(defmacro py. (obj method-name &rest args)
`(pymethod ,obj ,(py-sym method-name) ,@args))

(defpyfun "load_data" "keras.datasets.mnist")
(defpyfun "expand_dims" "numpy")
(defpyfun "to_categorical" "keras.utils")
(defpyfun "Sequential" "keras")

(defpyfun "Input" "keras.layers")
(defpyfun "Conv2D" "keras.layers")
(defpyfun "MaxPooling2D" "keras.layers")
(defpyfun "Flatten" "keras.layers")
(defpyfun "Dropout" "keras.layers")
(defpyfun "Dense" "keras.layers")

(defparameter *num-classes* 10)
(defparameter *input-shape* '(28 28 1))

(defun get-data (data index1 index2)
(py. (py. data "__getitem__" index1) "__getitem__" index2 ))

(let (( score nil))
(with-remote-objects

(let* ((data (load-data)) ;; ((x-train y-train) (x-test y-test))
(x-train (expand-dims :a (py. (get-data data 0 0) "__truediv__" 255) :axis -1))
(y-train (to-categorical (get-data data 0 1) *num-classes *))
(x-test (expand-dims :a (py. (get-data data 1 0) "__truediv__" 255) :axis -1))
(y-test (to-categorical (get-data data 1 1) *num-classes *))
(batch-size 128) (epochs 3) (model (sequential )))

(py. model add (input :shape *input-shape *))
(py. model add (conv-2d :filters 32 :kernel_size '(3 3) :activation "relu" :name "conv2d1"))
(py. model add (max-pooling-2d :pool_size '(2 2) :name "maxpool1"))
(py. model add (conv-2d :filters 64 :kernel_size '(3 3) :activation "relu" :name "conv2d2"))
(py. model add (max-pooling-2d :pool_size '(2 2) :name "maxpool2"))
(py. model add (flatten ))
(py. model add (dropout 0.5))
(py. model add (dense *num-classes* :activation "softmax"))

(print (py. model summary ))

(py. model compile :optimizer "adam" :loss "categorical_crossentropy" :metrics #("accuracy"))
(py. model fit x-train y-train :batch_size batch-size :epochs epochs :validation_split 0.1)

(setf score (py. model evaluate x-test y-test :verbose 0))))
(format t "Test loss: ~A~%" (item score 0))
(format t "Test accuracy: ~A~%" (item score 1)))

3.3 Python DL Integration Using Py4CL-CFFI
As discussed above, Py4CL-CFFI takes a slightly different approach
than Py4CL, namely access to Python via a FFI-based approach.
Hence, as discussed in [3] communication/calling Python is faster,
which is particularly important for processes/calls of short tomedium
duration, whereas longer running processes potentially do not ben-
efit that much from the reduced communication overhead. For a
broader description and benchmarks we refer to [3] for a more
detailed evaluation and discussion. In our case of DL, specifically
when constructing larger DL models, most of the time is spent in
training and testing the respective DL model.

In line with the examples presented above, Listing 3 illustrates
a simple example of a DL model implemented using Py4CL-CFFI.
Here, we again refer to the standard example for the MNIST dataset
using a convolutional neural network architecture. Like in the pre-
vious example using Py4CL, the Py4CL-CFFI framework is applied
using Keras (in Python). The syntax for importing modules and
accessing/calling Python callables slightly differs from Py4CL, nev-
ertheless the overall structure is rather similar. In this example,
several helper functions are included, which enable both easier
readability and a more streamlined applicability of the respective
Python functionality.

ELS 2025 35



ELS’25, May 19–20 2025, Zurich, Switzerland Martin Atzmueller

4 Discussion
Regarding the three presented frameworks/options for DL in Com-
mon Lisp, there are different levels of integration with respective
advantages and drawbacks. With frameworks directly implemented
in Common Lisp, for example, it is possible to more directly inter-
face regarding (also low-level) computationswhich can be beneficial
for advanced applications such as physics-informed machine learn-
ing [9, 28] or neuro-symbolic (hybrid) [5, 22, 54] approaches. Here,
then also the advanced capabilities of efficient Common Lisp com-
pilers, for example, SBCL can be utilized, since those functions can
be compiled to efficient native code – in contrast to, for example,
interpreted Python code. Regarding extensibility, there is, e. g., the
option of adapting functions directly, or to tweak the behavior of
specific classes and/or methods. However, when specific function-
ality is not available in Common Lisp libraries (yet), then other
framework interfacing options are often necessary.

Regarding such frameworks which are made accessible to Com-
mon Lisp via foreign function or stream-based inter-process inte-
gration, there are also both advantages and drawbacks. There is a
variety of such (foreign) DL frameworks available – a potentially
clear advantage. However, the respective method of integration
needs to take into account specific requirements of the application,
which need to be matched to the possible options. For instance,
regarding stream-based approaches, we already pointed out chal-
lenges regarding data exchange using stream-based interaction
mechanisms. Then, specific wrappers in the foreign language (such
as Python) can abstract away specific functionality which cannot
be enabled on the Common Lisp side due to efficiency issues in
data conversion. In our example, this was kind of indicated by only
considering the remote objects on the Python side, such that the
relatively large datasets were only handled there and did not need
to be converted to a serialized representation to be sent to Com-
mon Lisp via the stream-based interface. Also, in cases where the
interaction happens via the stream inter-process communication,
there is some limit to the possible number of function calls in a
given timeframe. Some analysis on this is given in [3]. Also, inter-
action is typically focused on function and method calls, such that
extensibility (as discussed above) is limited.

In addition to the stream-based interface, often also other foreign
function integration options are possible, in particular, when there
is a C-interface available. Then, FFI bindings can be generated
and applied, e. g., using c2ffi20 or cl-autowrap.21 A portable option
is provided, for example, using the (common) foreign function
interface (CFFI).22 Compared to using Py4CL, an important option
for a tighter foreign framework integration is provided by the
Py4CL2-CFFI project23 as discussed above. It enables to connect the
Python shared library via CFFI, as illustrated above, which results
in a Common Lisp image using one python instance with tighter
integration regarding data passing and specifically more efficient
calling options regarding functions/methods, since this is handled
on the FFI level. Another option is given by ABCL24, in particular,
when connecting to Java frameworks/libraries is important.

20https://github.com/rpav/c2ffi
21https://github.com/rpav/cl-autowrap
22https://github.com/cffi/cffi
23https://github.com/digikar99/py4cl2-cffi
24https://abcl.org/

5 Conclusions
As we have presented in this paper, there are several frameworks
and options available for DL in Common Lisp. In particular, this
relates to direct (deep) integration into the Common Lisp system
itself as well as connecting to foreign libraries and/or frameworks.
For those, there are several promising approaches enabling a rich
set of implementation options.

We have provided a brief perspective on a selection of respective
fameworks/options regarding DL using Common Lisp, specifically
on a framework allowing the mentioned direct access to the mod-
eling elements for engineering ANN/DL architectures including
network structure, loss functions etc„ and provided a targeted im-
plementation example. In addition, we have sketched two further
options using frameworks enabling access to (foreign) Python-
based libraries, and also discussed a standard example (MNIST) in
more detail. Interesting options for future work include, for exam-
ple, detailed evaluations of the respective frameworks and libraries
as well as extensions concerning more DL architectures.

There are also several further open issues and perspectives:

(1) The mentioned MGL framework implemented in Common
Lisp currently does not extend to some recent architectures
for DL, e. g., graph neural networks [52, 57]. This can be
addressed, e. g., by specialized extensions, or by using foreign
libraries and respective bridging frameworks. Then, high-
level API access via Common Lisp is enabled, potentially
using additional interfacing layers on the library side.

(2) Frameworks such as Petalisp can enable promising options
as efficient backends for Common Lisp based frameworks
using the provided abstractions for efficient parallel scientific
computational support – potentially in a uniform way.

(3) The latter point is also relevant for specialized computational
GPU backend support. In general, for DL applications GPU
support is rather important, which is also enabled by vari-
ous frameworks. As discussed above, most (foreign-library-
enabled) frameworks provide sufficient GPU support, such
that including those can also help to address this issue, when-
ever the application requirements allow for the Common
Lisp to the foreign library setting, e. g., in terms the imple-
mented foreign function and data structure integration etc.

(4) Mobile devices pose specific challenges regarding the deploy-
ment of DL models. Therefore, options for running Common
Lisp implementations on mobile devices are also important
here. Interesting perspectives involve optimizations for such
mobile devices using specific models, and/or providing spe-
cific (cross-)compilation steps to specialized model variants.

(5) Advanced DL-based approaches such as physics-informed
machine learning (e. g., [9, 28]) or the integration of sym-
bolic and sub-symbolic (neural) approaches (e. g., [5, 22, 54])
are potentially promising applications fields, where Com-
mon Lisp can potentially demonstrate its strengths in the
future. Here, deep integration of the respective frameworks
can potentially enable considerable advantages compared
to the currently available options due to the adaptation and
integration capabilities into low-level processes, the general
extensibility of the respective basic (low-level) components,
as well as the overall system integration.
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Abstract
We present our efforts to adapt the SBCL runtime and compiler to
deploy applications onto the NX platform. The Nintendo Switch
(NX) is a 64-bit ARM-based platform for video games with a pro-
prietary micro-kernel operating system. Notably this system does
not give programs the ability to mark pages as executable at run
time or expose access to thread signal handlers, both of which
present a significant hurdle to SBCL’s intended bootstrap process
and runtime operation. To work around these hurdles we modify
SBCL’s build system to bootstrap on a Linux ARM system, which
is similar enough to the NX to be able to compile user code. We
then use a technique called “shrinkwrapping” to combine the Lisp
code and data with the C runtime compiled for the NX to pro-
duce a final, fully static ELF executable that can be run on the NX,
without the need for runtime code generation. We further use a
restricted version of “safepoints” to synchronise threads during
garbage collection.
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• Software and its engineering → Runtime environments;
Dynamic compilers; Garbage collection; Software creation and
management.
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Figure 1:The Nintendo Switch (NX) handheld game console

1 Introduction
The Nintendo Switch (codename NX) is a handheld video game
console based on the ARM 4 Cortex-A57 64-bit architecture[5]. It
features a proprietary micro-kernel operating system called the
“Nintendo Switch system software”[8] (NX OS), and normally runs
only software that has been licensed, approved, and digitally signed
and encrypted by Nintendo.

Developing licensed software for the NX has to be done via Nin-
tendo’s own proprietary Software Development Kit (SDK), which
they distribute only under a non-disclosure agreement (NDA). An
open-source third-party alternative to the SDK is available[1], but
this cannot be used for licensed software.

The OS-provided runtime environment is directly suitable only for
C and C++ software. Other game engines such as Unity, Unreal, and
Godot do provide exporting functionality to the NX, meaning that
ports for the runtime environments they rely on such as .NET/Mono
(C#), Lua, and GDScript have been developed, but remain closed-
source.
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Many high-performance native-code Common Lisp implementa-
tions operate by compiling and loading user code at runtime into
the same process (the state of which is traditionally termed an ‘im-
age’ in the Lisp world). These implementations typically provide a
way to dump an image in a way where the runtime of a new process
can load it. This implementation technique contrasts with ahead-of-
time compilation languages such as C where code is compiled and
linked ‘offline’ into an executable whose entire code and runtime
gets loaded into its own process by the operating system. On the
NX, the SBCL runtime cannot compile and load new code at run-
time after an executable is loaded by the operating system on the
NX due to platform security restrictions. Because large portions of
the system such as the compiler of such image-based Common Lisp
implementations are also written in Common Lisp, this restriction
means that the implementation must be bootstrapped and all user
code compiled ahead of time off of the NX, before the compiled
Lisp code in the image can then somehow be linked into a runtime
built for the NX by the operating system, rather than relying on
the implementation runtime to load the image. We discuss the in-
tricacies of this problem for an image-based implementation such
as SBCL in section 3 and section 4.

A port of a Common Lisp implementation such as ECL[3], where
Lisp code is compiled to C and easily linked into a C runtime, is con-
ceivable and presents far fewer challenges for building applications
for the NX than with an image-based implementation. However,
due to the high performance requirements of video games and the
relatively low-power platform of the NX, we decided to try and
port SBCL, since SBCL produces much faster code than ECL es-
pecially with regards to CLOS. In addition, some of the obstacles
presented by the NX apply in general to how most Common Lisp
implementations function.

For example, the NX OS does not provide user signal handlers. This
lack of signal handlers is a problem for the Garbage Collector (GC),
as SBCL relies on inter-thread signalling to park threads during
garbage collection. While SBCL does provide a safepoints mecha-
nism for GC that is used on Windows which similarly lacks signal
handlers, this mechanism is not well tested on other platforms, and
as-is still did not meet the requirements of the locked-down NX
platform. We discuss the GC in detail in section 5.

While we can now compile and deploy complex Common Lisp ap-
plications to the NX, some parts of the runtime remain unsupported,
and we discuss our future efforts in this regard in section 7.

2 Related Work
Rhodes[7] outlines the methodology behind the general SBCL boot-
strapping process, which we extend for our locked-down target
platform.

A Common Lisp bootstrapping process as Durand et al.[4] outline
where the whole target image is created on the host would work to
avoid requiring compiling and executing code at runtime on the NX;
however, there is not a complete implementation of this technique
yet. User libraries which require querying foreign functions at
compile time where the details of target architecture matter also
cannot be handled with this technique.

Citing information on the operating system of the NX is diffi-
cult as it is a closed-source platform with all usual information
placed under NDA. All publicly available information is from secu-
rity research such as by Roussel-Tarbouriech et al.[8] and reverse-
engineering[1].

Particularly, we are unaware of any publication about the porting
of other runtime environments to the NX, such as C#, JavaScript,
Lua, etc.

Patton[6] and Schwartz[9] describe some details about SBCL’s
garbage collector which we modify for our port.

3 Build System
The usual process to build the SBCL compiler and runtime proceeds
in several distinct phases, some of which need to be run on a “host
system” and others on the “target system”. This process does allow
for limited cross-compilation, wherein the “host system” steps can
be run on an operating system and platform that is not that of the
target we are trying to compile for. However, the “target system”
steps are supposed to run on the target architecture, and involve
compiling, loading, and executing new system code in an existing
image. As mentioned in the introduction, we cannot load and exe-
cute code in the same process that compiled the code on the NX, as
the NX OS does not allow us to map new executable pages.

The basic idea of our solution to this issue is to replace the NX
as initial target with an ARM64-based Linux. Once everything,
including user code, has been compiled on this Linux target, we
extract all Lisp code and data out using a process called shrinkwrap-
ping and link it together with the SBCL C runtime as compiled for
the NX. This process ultimately results in a fully static ELF exe-
cutable that does not perform any dynamic memory mapping or
compilation.

Our build still functions largely the same as the one outlined by
Rhodes[7], though being run roughly twice with special configura-
tions to accomplish the hybrid build.

(1) build-config (NX)
This step gathers whatever build configuration options for the
target and spits them out into a readable format for the rest of
the build process. We run this on some host system (which may
not be our ARM64 Linux intermediary), using a special flag
to indicate that we’re building for the NX. We also enable the
fasteval contribution, which we need to step in for any place
where we would usually invoke the compiler at runtime.

(2) make-host-1 (NX)
Next we build the cross-compiler with the host Lisp compiler,
and at the same time emit C header files describing Lisp object
layouts in memory as C structs for the next step.

(3) make-target-1 (NX)
Now we use the C compiler the Nintendo SDK provides for
us, which can cross-compile the SBCL C runtime for the NX.
We had to make adjustments to the C runtime bits, as the NX
OS is not POSIX compliant and lacks a few features the SBCL
C runtime usually takes advantage of. The SBCL C runtime
contains the GC and OS glue bits that the Lisp code needs. The
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artefacts from this stage will later be used in step (10) to attach
the C runtime to the shrinkwrapped core.

(4) build-config (Linux∼NX)
We now create an almost-normal ARM64 Linux system with
the same feature set as for the NX. This process involves the
usual steps as for a “normal” Linux ARM64 build, though with a
special flag to inform some parts of the Lisp process that we’re
going to ultimately target the NX.

(5) make-host-1 (Linux∼NX)
This step proceeds as usual.

(6) make-target-1 (Linux∼NX)
This step proceeds as usual.

(7) make-host-2 (Linux∼NX)
With the target runtime built, we build the target Lisp sys-
tem (compiler and the standard library) using the Lisp cross-
compiler built by the Lisp host compiler in make-host-1 (Linux∼NX).
This step produces a ”cold core” that the runtime can jump into,
and can be done purely on the host machine. This cold core is
not complete, and needs to be executed on the target machine
with the target runtime to finish bootstrapping, notably to ini-
tialise the object system, which requires runtime compilation.

(8) make-target-2 (Linux∼NX)
The cold core produced in the last step is loaded into the target
runtime, and finishes the bootstrapping procedure to compile
and load the rest of the Lisp system. After the Lisp system is
loaded into memory, the memory is dumped out into a ”warm
core”, which can be loaded back into memory in a new process
with the target runtime. From this point on, new code can be
loaded and images can be dumped at will.

(9) user
For user code we now perform some tricks to make it think
it’s running on the NX, rather than on Linux. In particular we
modify *features* to include :nx and not :linux, :unix, or
:posix. Once that is set up and ASDF has been sufficiently
tricked into believing we are on the NX, we can compile our
program ”as usual” and at the end dump out a new core.

(10) shrinkwrap
Once all our code has been loaded and a final core has been
produced, we shrinkwrap the image to produce assembly files.
The details of this technique are outlined in section 4. These
assembly files can then be linked together with the SBCL C
runtime compiled for the NX in step (3) with the Nintendo SDK
toolchain, producing a final ELF executable.

(11) package
The final step is to run all the other SDK toolchain bits to
produce a signed application package, which can be deployed
to a Nintendo Switch development kit to be run.

A notable extra wrinkle in this procedure is that the SDK is avail-
able only for Windows. To accommodate this platform restriction,
the custom build system we developed to automate these steps can
be run either directly from Windows using another ARM machine
remotely to run the Linux bits, or it can be run from a Linux system

Figure 2: A diagram of the build steps and their dependencies

with the ARM bits being run either locally or remotely and the Win-
dows bits being run either remotely or through Wine[2].

4 Relocation
Lisp objects in memory contain absolute pointers, with the result
that dumping the in-process state of all Lisp memory spaces to disk
results in a core image filled with absolute pointers. Traditionally,
image-based Lisp implementations such as SBCL map their address
spaces to fixed addresses for two reasons: First, reloading an image
into a process is easier this way, since objects can be mapped back
in the new image directly to where they were in the process that
dumped the image. Second, some architecture backends optimize
code generation by hardwiring the address of certain Lisp objects
directly into the machine code.

4.1 Address Space Layout Randomization
Because the NX operating system enforces address space layout
randomization, the Lisp runtime cannot rely on being able to map
its address spaces to fixed addresses. Hence, the runtime must
relocate all objects present in the dumped image to the address
spaces placed randomly by the operating system. As part of our
work, we have extended the existing support for heap relocation
to allow all other Lisp spaces used by SBCL to be relocated as well,
with the result being that the runtime can fix up all absolute pointers
mapped in from the image to point to the random addresses given
to the runtime by the operating system. In addition, we modified
the Lisp code generation to produce strictly position-independent
code.
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However, code objects still present a special problem on the NX for
this relocation process. A code object in SBCL is represented like
other Lisp objects in-memory, in that it has a headerword describing
the type and size of code object. The code object also contains slots
pointing to the debug information associated with the code object
as well as other boxed objects which represent constants referenced
by the code instructions. This is so that the garbage collector can
scan the code object and fix up these boxed pointers as it does
with other Lisp objects. Finally, these slots are followed by the raw
machine instructions and function entry points representing the
compiled Lisp code. The code object associated with the function
defined in Listing 1 is illustrated in Figure 3.

(defun f ()
(cons '(42 . 1958) 'els2025))

Listing 1: A Lisp function referencing the constants '(42 . 1958)
and 'ELS2025.

Notably, the code object contains both executable machine code and
absolute pointers to Lisp objects. Because the machine instructions
are to be executed by the CPU, the pages the code object is allocated
on must be marked executable by the runtime.

Figure 3: Representation of the compiled code object (in boldface)
for the function #'f in memory, along with the cons and symbol
objects it references.

However, executable pages are not writable on the NX, meaning
the pointers to boxed Lisp data for the debug information and code

constants cannot be fixed up as part of the relocation process on
start-up. Furthermore, only the system loader is able to allocate
executable pages by loading code from on-disk ELF .text sections,
meaning it isn’t possible to first fix up boxed object pointers in the
code object before marking the code pages executable. In either case,
the garbage collector would not be able to fix up these pointers
either. Therefore, the code and data need to be separated, at first
so that the runtime can relocate the absolute pointers to the Lisp
objects, and later so that the moving garbage collector is able to fix
up those references. This restriction requires the shrinkwrapping
procedure to separate the data from the code and to rewrite the
code in the image offline so that any references in code to code
constants1 are into a dislocated read/write space instead of into the
code object itself, which is on an executable page and hence not
writable on the NX. To demonstrate this process in more detail, our
modified offline shrinkwrapping process produces two artefacts
from a normal Lisp image:

Figure 4: Representation of the same code object and the cons and
symbol objects it references after code/data segregation and the
rest of the shrinkwrapping process.

• pie-shrinkwrap-sbcl.s: A textual assembly file is generated
with all code objects in the original core image listed under
.text sections. The pointers to debug information and code
constants inside the code object are zeroed out, and the code
constants referenced via the ARMv8 LDR instruction are dis-
placed into a r/w .data section shared by all code objects. The
LDR instructions are rewritten to access the constants from this
section instead.

• pie-shrinkwrap-sbcl.o: A binary object file with the rest of
the Lisp data from the core image section is generated. The

1As for the per-code-object slot containing debug information, we modified the Lisp
system so that debug information is not accessed through the code object at all but
rather through a weak hash table keyed by code object.
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majority of the Lisp image is thus ‘shrinkwrapped’ into a large
r/w .data section.

The reason for producing both a textual and a binary artefact is that
it is easier to rewrite and produce textual assembly for code, and it
is faster to process and link a binary artefact for the rest of the data.
Figure 4 illustrates how the code object for the function #'f gets
split up. The shrinkwrapping process then links both artefacts with
the rest of the SBCL runtime to produce the final executable. The
upshot of this process is that both the relocation process and the
garbage collector can now scan and fix up all boxed pointers in the
image at runtime without running into the read-only constraint for
executable pages.

4.2 Linkage between Lisp and foreign
code

Another part of the system impacted by the need for relocation is
linkage between Lisp and foreign code. SBCL uses a linkage table
that indirects calls to foreign code from Lisp so that foreign code
can be loaded by the operating system at any address on startup
and resolved in the linkage table. However, for callbacks into Lisp
from foreign code, Lisp must create function pointers to snippets
of assembly allocated in static (i.e. never moved by GC) Lisp space.
These pointers can then be passed to and called from foreign code.
To ensure that such function pointers in a saved image are valid
even after the Lisp spaces containing the callback entry points are
relocated, the function pointers must somehow be fixed up. We
managed to solve this problem by having the offline shrinkwrap-
ping process move the callback entry code into another .text ELF
section while recording fixup information. The operating system
can then load the callback entry code into executable pages, and
the Lisp runtime can rewrite the static function pointers to point
to where the code was loaded using the recorded fixup informa-
tion.

5 Garbage Collection
SBCL’s default garbage collector, gencgc, is a stop-the-world collec-
tor, meaning it must stop or park other threads in the process. Doing
so is necessary so that the threads don’t access any memory that
the collector might move or change during collection. On RISC ar-
chitectures like the ARM the Nintendo Switch runs on, the collector
is also precise and must be able to identify which storage locations
contain Lisp objects, so it is important that the threads are parked
at code locations where the collector can safely do so.

In the discussion that follows, a Lisp thread is a native thread reg-
istered to the Lisp runtime that can either be executing Lisp or
foreign code. Native threads created by Lisp are immediately regis-
tered to the runtime. A native thread created by foreign code that
calls into Lisp via e.g. a callback gets a Lisp thread associated with
it by the runtime when it starts executing Lisp code for the first
time.

On Unix systems, the POSIX signal mechanism is used by default to
park all Lisp threads besides the thread executing GC. By sending a
signal to every other thread, each thread will enter a signal handler,
which can then park the thread. This method is advantageous,

since it leverages an operating system mechanism to interrupt
thread execution and frees the thread from checking whether it
should park. The garbage collector can also use the signal context
mechanism to read and process the values of all registers and the
Lisp stack at the point where the thread stopped. On the flip side,
Lisp code must be generated in such a way that the GC almost
always knows how to parse Lisp objects from registers or the stack
at any code location. However, certain instruction sequences in the
generated code then need to behave atomically in the sense that it
is not safe to stop for GC at those locations, so extra bookkeeping is
done to defer interrupts in those sequences. Lisp threads in foreign
code are stopped and restarted just as Lisp threads are in Lisp code,
though only the contents of its stack are scavenged.

On Windows, no equivalent signal mechanism is available, so a
strategy using safepoints must be employed instead. A safepoint is a
location in code which is known to be GC-safe, so the collector has
enough information at that location to correctly function. The Lisp
compiler then injects code (here termed yieldpoint code) at these
safepoints, such as at function call boundaries and loop returns,
which causes the thread to check whether it should yield for GC.
Yieldpoint code should be inserted strategically so that it doesn’t
take too long for threads to park after a given thread decides to
collect garbage, but also so that the overhead of checking whether
to park the thread is as low as possible. Lisp threads in foreign code
do not encounter yieldpoint code generated by the GC, but also
do not need to be parked anyway, as foreign code is assumed to
not access Lisp data. Its Lisp stack can still be safely scavenged
while the thread is executing foreign code. However, since the
thread is not stopped, it is possible that the thread may re-enter
Lisp during a collection, in which case code for re-entry into Lisp
must check if GC is running and park the thread and wait for GC to
complete before the thread can execute Lisp code again. A similar
consideration applies for Lisp threads in Lisp which enter foreign
code while the collecting thread is waiting for all Lisp threads in
Lisp code to stop; the Lisp thread must communicate to the GC that
it is entering foreign code and hence the collecting thread need not
wait for it to yield anymore, since the Lisp thread is about to start
executing foreign code. For the purposes of this paper, we will call
these points of communication at foreign function call boundaries
foreign yieldpoints.

To summarize, the safepoint and signal mechanisms can be seen
as inverses of each other: whereas code generation for the signal
mechanism must ensure that the majority of code locations are safe
for GC, the safepoint mechanism requires only that strategically
chosen locations are safe for GC. The safepoint mechanism also
allows foreign code to run without stopping at the cost of extra
communication at foreign call boundaries, while the signal mecha-
nism stops all Lisp threads regardless of whether they are executing
foreign code or not.

In the existing safepoint ports, SBCL exploits hardware memory
protection facilities provided by the operating system in order to
make generated yieldpoint code as small as possible: GC toggles the
read and write permission bits of pages in virtual memory in order
to communicate to the thread various GC state transitions. Non-
foreign yieldpoint code then consists of a single read instruction
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from a global page that a GC marks as non-readable when it wants
all Lisp threads to park. The resulting page fault traps into trap
handler code that yields the thread and progresses the state of the
GC. Foreign yieldpoint code consists of a write instruction onto
a thread-local page, informing the GC whether the Lisp thread is
entering or leaving foreign code; the GC is then able to selectively
cause the relevant threads to trap and wait for the state of the
GC to progress or allow the relevant threads to continue toggling
the write permissions of the thread-local page accordingly. One
other advantage of using page permissions is that it allows race-
free examine + wait + use in the latter scenario where the ‘entry
into/return from foreign code’ flag word in memory needs to be
read and appropriately acted on.

5.1 Challenges for the NX
As theNX also does not expose a POSIX signalmechanism, we chose
to use the safepoint strategy as a starting point. However, as men-
tioned previously, even the safepoint strategy relies on hardware
memory protection facilities to aid inter-thread communication
between the collecting thread and other threads. The NX does not
provide ways to install trap handlers for memory faults in release
mode, so a different mechanism had to be devised.

For non-foreign yieldpoint code, it sufficed to replace the trapping
read instruction with a polling instruction sequence which simply
checks if a global ‘stop now’ word is true and if so, branches into a
trampoline which calls into the trap handling code. Since there is
no hardware trap and associated register context under this scheme,
the trampoline also serves to spill all registers onto the Lisp stack
so that the garbage collector correctly scavenges and fixes up the
roots contained in the registers at the safepoint.

For foreign yieldpoint code, we replace the page permission scheme
by designating an additional ‘permission’ word on the thread local
page in addition to the ‘entry into/return from foreign code’ flag
word to emulate the effect of the page permission scheme: the
additional word flags whether write access to the other word is
allowed. Since the thread containing the page and the collector
thread may both race to access the two words in memory, the
code sequence examining the permission word and dispatching to
the correct GC state handler based on the value of the flag word
requires explicit synchronization primitives. For now, we use locks
to ensure race-free communication between the collector thread
and any threads which are entering or exiting foreign code.

In addition to the existing safepoint mechanism requiring hard-
ware page protection facilities, the garbage collector also used
certain virtual-memory tricks to quickly zero out and/or return
large chunks of memory back to the operating system. As the NX
does not expose such sophisticated virtual memory management
to the application developer, we had to rely on slower and more
portable means of achieving the same effect.

6 Conclusion
We have demonstrated that it is possible to port SBCL even to a
very restrictive platform that is hostile towards dynamic runtimes
such as used for Lisp.

Figure 5: A demo running in the Trial Common Lisp game engine
on the Nintendo Switch development hardware

Using a substitute build host that is similar enough to the target
platform, we can compile all code ahead of time, then substitute
the base runtime and rewrite the resulting code in order to create
an executable suitable for the target platform.

We have also managed to update the garbage collector to work on
operating systems with more restrictive feature sets than are found
on a typical desktop operating system.

7 Further Work
Currently, we rely on the fasteval system to circumvent runtime
compilation restrictions. This is especially vital for CLOS, since the
discriminating function is compiled only on first call of a generic
function. However, since we know that we don’t dynamically add
or remove methods, we should be able to pre-compile all of these
functions as well. We’d like to add such a CLOS freeze step to the
build pipeline, perhaps using a technique similar to satiation as
outlined by Strandh et al.[10]

We also unfortunately have not yet had the time to successfully
adapt Shirakumo Games’ previous title, Kandria, to work on the NX.
This port is currently in progress, and it is likely that further minor
incompatibilities or bugs in our current SBCL port will surface as
part of this effort.

The follow-up console to the Nintendo Switch, called “Switch 2” has
also recently been announced. The device is backwards compatible
with the NX and we expect that the operating environment will be
very similar if not identical to that of the NX, just with more RAM
and a better CPU and GPU. We hope to receive developer access to
the Switch 2 and ensure that the port works for that, too.

Finally there are a number of improvements we’ve made that we
would like to upstream to lessen the maintenance burden. We’ve
already contributed a bunch of the changes back upstream, but a lot
of it is also tied to the proprietary SDK and cannot be open-sourced
due to the NDA, and some other changes are too contentious for
the rest of the SBCL team to want to upstream.
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